STUDIJA ENERGETSKOG SEKTORA U BiH
NACRT KONAČNOG IZVJEŠTAJA

Draft sažetka nacrta konačnog izvještaja

PROJEKT IZVODI KONZORCIJ KOJEG ČINE:
Energetski institut Hrvoje Požar, Hrvatska
Soluziona, Španjolska
Ekonomski institut Banjaluka, BiH
Rudarski institut Tuzla, BiH

PROJEKT FINANCIRA:
Svjetska Banka
DRAFT SAŽETKA NACRTA KONAČNOG IZVJEŠTAJA

<table>
<thead>
<tr>
<th>Naziv projekta:</th>
<th>Studija energetskog sektora u BiH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Šifra projekta:</td>
<td>BHP3-EES-TEPRP-Q-04/05 WB</td>
</tr>
<tr>
<td>Zemlja:</td>
<td>Bosna i Hercegovina</td>
</tr>
<tr>
<td>Konzultant:</td>
<td>Konzorcij:</td>
</tr>
<tr>
<td></td>
<td>Energetski institut Hrvoje Požar, Hrvatska</td>
</tr>
<tr>
<td></td>
<td>Soluziona, Španjolska</td>
</tr>
<tr>
<td></td>
<td>Ekonomski institut Banjaluka, BiH</td>
</tr>
<tr>
<td></td>
<td>Rudarski institut Tuzla, BiH</td>
</tr>
<tr>
<td>Kontakt osobe:</td>
<td>Haris Boko</td>
</tr>
<tr>
<td></td>
<td>Davor Bajs</td>
</tr>
<tr>
<td>Telefon:</td>
<td>++ 385 1 6326 165</td>
</tr>
<tr>
<td></td>
<td>++ 385 1 6326 102</td>
</tr>
<tr>
<td>Fax:</td>
<td>++ 385 1 6040 599</td>
</tr>
<tr>
<td></td>
<td>++ 385 1 6040 599</td>
</tr>
<tr>
<td>e-mail:</td>
<td>hboko@eihp.hr</td>
</tr>
<tr>
<td></td>
<td>dbajs@eihp.hr</td>
</tr>
</tbody>
</table>

Datum izvještaja: 15. 02. 2008.

Vremenski plan predaje izvještaja:

2. Izvještaj o napretku na projektu 31. 5. 2007.

Autori izvještaja: Goran Granić (voditelj tima), Mladen Zeljko (ekspert za električnu energiju), Idriz Moranjić (ekspert za ugljen), Jose Andres Martinez (ekspert za plin i naftu), Marisa Olano (ekspert za obnovljive izvore), Željko Jurić (ekspert za zaštitu okoliša)
SADRŽAJ

1. UVOD ... 1

2. REZULTATI PROJEKTA ... 3
 2.1. Energetske rezerve, proizvodnja, potrošnja i trgovina (MODUL 1) 3
 2.2. Potrošnja električne energije (MODUL 2) .. 12
 2.3. Proizvodnja električne energije (MODUL 3) ... 13
 2.4. Prijenosna mreža (MODUL 4) ... 15
 2.5. Distribucija električne energije (MODUL 5) ... 19
 2.6. Okvir za regulaciju i restrukturiranje elektroenergetskog sektora
 (MODUL 6) ... 21
 2.7. Podrška socijalno ugroženim potrošačima električne energije (MODUL 7) 24
 2.8. Rudnici uglja (MODUL 8) ... 25
 2.9. Daljinsko grijanje (MODUL 9) ... 28
 2.10. Prirodni plin (MODUL 10) ... 29
 2.11. Nafta (MODUL 11) .. 32
 2.12. Upravljanje potrošnjom, štednja energije i obnovljivi izvori energije
 (MODUL 12) ... 35
 2.13. Okoliš (MODUL 13) .. 38
 2.14. Plan investicija i opcije financiranja (MODUL 14) 39

.. 12
1. UVOD

Studija energetskog sektora u BiH sadrži pregled i sintezu dosadašnjih studija o energetskom sektoru BiH te nova istraživanja energetskog sektora. Studija izvještava o rezultatima provedenih analiza i daje preporuke za reformu i jačanje energetskog sektora, a sve u konačnom cilju pružanja podrške BiH u definiranju nacionalne energetске strategije.

S obzirom na navedene ciljeve definiran je niz konkretnih zadataka s obzirom na energetske bilance, elektroenergetski sektor, sektor toplinarstva, sektor prirodnog plina, sektor nafte i naftnih derivata, opcije upravljanja potrošnjom i uštede energije, utjecaj na okoliš svih oblika energije... Posebna pažnja posvećena je investicijskim aspektima tih sektora i opcijama financiranja.

U okviru projekta prikupljene su informacije o rezervama fosilnih goriva i mogućoj proizvodnji energije iz obnovljivih izvora, izrađene su povijesne energetske bilance za 1990. godinu i razdoblje 1999. – 2004. prema IEA definicijama i formatu, uspoređeni su relevantni indikatori s istim u susjednim zemljama i zemljama EU, izrađene su energetske bilance za 2010., 2015. i 2020. godinu u tri scenarija (referentni, niži i s mjerama), odnosno pripremljene su projekcije potrošnje energije za tri scenarija.

U okviru elektroenergetskog sektora napravljen je pregled postojećih hidroelektranama i termoelektranama, ispitane su potrebe revitalizacije postojećih proizvodnih jedinica, izračunate su prognoze proizvodnje električne energije iz postojećih elektrana do 2020. za tri scenarija, a potom su ispitane i tehnički izvedive opcije za buduće elektrane, njihovi investicijski i pogonski troškovi i konkurencnost na tržištu. Za nove elektrane je također izračunata proizvodnja električne energije do 2020. godine za tri scenarija. Za prijenosnu mrežu procijenjene su investicije potrebne za rehabilitaciju, jačanje i/ili proširenje postojećih kapaciteta mreže kao i investicije potrebne za sistem vođenja. Za distribucijsku mrežu također je pripremljen investicijski program razvoja. U ovom je sektoru, pored prethodnog, provedena i analiza reformi te su date preporuke za buduće korake temeljem izvještaja o pregledu studije "Socijalna procjena potrošača električne energije i evaluacija pripadnih programa socijalne zaštite".

U okviru sektora ugljena razmotreni su zaključci i preporuke studija i strategije o sektoru toplinarstva, njihova kompetitivnost s alternativnim izvorima energije te su ispitane opcije za revitalizaciju i poboljšanja. Pored toga, prognozirana je proizvodnja i potrošnja topline iz centraliziranih sistema za tri scenarija, dati su organizacijski i financijski pokazatelji toplana kao i preporuke za poboljšanja.

Dalje, u okviru projekta izvršen je pregled studije restrukturiranja sektora prirodnog plina BiH i studije razvoja sektora prirodnog plina BiH. U tom kontekstu, ažurirani su rezultati i preporuke ovih studija, prikazane su strukture cijena, date su usporedbi cijena, preporuke i poboljšanja te prognoze potrošnje prirodnog plina do 2020. godine za tri scenarija. Prepoznate su i odgovarajuće investicijske potrebe.

U sektoru nafte i naftnih derivata, pripremljena je analiza opskrbe i cijena te analiza zadovoljenja odgovarajućih standarda EU koji se odnose na naftni sektor, prognozu
Ispitane su opcije upravljanja potrošnjom i mogućnosti uštede energije, preporučene su aktivnosti za postizanje ušteda energije i procjena ušteda u tri scenarija. Analizirana je potrošnja ogrjevnog drveta i napravljene su projekcije do 2020. godine za tri scenarija.

Analizirani su potencijali za izvodivu proizvodnju iz obnovljivih izvora energije i preporučene su mjere za njihovo korištenje. Napravljene su prognoze opskrbe i potrošnje za obnovljive izvore energije do 2020. godine za treći scenarij energetske bilance i investicijske potrebe. Također, procijenjeni su financijski troškovi opskrbe iz različitih izvora energije u grijanju kućanstava, pripremi tople vode i kuhanju. Prognozirana je potrošnja iz različitih izvora energije u grijanju kućanstava, pripremi tople vode i kuhanju, te je napravljena evaluacija strukture cijene i postojećih poreza.

U okviru projekta analizirana je BiH i međunarodna regulativa iz područja zaštite okoliša. Procijenjeni su postojeći i očekivani budući utjecaji energetskog sektora na okoliš te predložene mjere za smanjenje utjecaja na okoliš, pri čemu je posebna pozornost posvećena emisijama u zrak.

Na kraju su dati investicijski planovi za elektroenergetski sektor, sektor eksploatacije ugljena, toplinarstvo, sektor prirodnog plina, nafte, novih i obnovljivih izvora energije, za energetsku efikasnost i za zaštitu okoliša. Prikazane su opcije financiranja i investicijski troškovi.
2. REZULTATI PROJEKTA

Rad na Studiji odvijao se u okviru 14 međusobno odvojenih modula:

- Modul 1 – Energetske rezerve, proizvodnja, potrošnja i trgovina
- Modul 2 – Potrošnja električne energije
- Modul 3 – Proizvodnja električne energije
- Modul 4 – Prijenos električne energije i vođenje sistema
- Modul 5 – Distribucija električne energije
- Modul 6 – Okvir za regulaciju i restrukturiranje elektroenergetskog sektora
- Modul 7 – Podrška socijalno ugroženim potrošačima električne energije
- Modul 8 – Ugalja
- Modul 9 – Centralno grijanje
- Modul 10 – Prirodni plin
- Modul 11 – Nafta
- Modul 12 – Upravljanje potrošnjom, štednja energije i obnovljivi izvori
- Modul 13 – Okoliš
- Modul 14 – Plan investicija i opcije financiranja

U nastavku su prezentirani sažetci pojedinih modula.

2.1. Energetske rezerve, proizvodnja, potrošnja i trgovina (MODUL 1)

Energetske rezerve, proizvodnja, potrošnja i trgovina predmet su analize provedene u Modulu 1 koji je podijeljen u četiri međusobno odvojene knjige (A-D):

- Knjiga A – Povijesne energetske bilance
- Knjiga B – Anketa o potrošnji energije
- Knjiga C – Predviđanje potrošnje energije
- Knjiga D – Energetske bilance do 2020. godine

U nastavku su predstavljeni rezultati provedene analize u obliku pojedinačnih sažetaka za sve četiri knjige.
2.1.1. Povijesne energetske bilance (MODUL 1 – A)

Prvi korak u izradi energetskih bilanaca bilo je prikupljanje svih potrebnih i raspoloživih podataka u pojedinim entitetima. Prikupljeni su podaci za električnu energiju u svim elektroprivredama, podaci za ugljen i pojedine rudnike ugljena, podaci za derivate nafte i pojedine rafinerije, podaci za prirodni plin, podaci za javne kotlovnice i toplinsku energiju, kao i podaci za koksaru. Na temelju prikupljenih podataka i na temelju rezultata provedene ankete (knjiga B modula 1) za kućanstva, industriju i usluge izrađene su energetske bilance.

Najveći dio ukupne potrošnje energije odnosi se na finalnu potrošnju koja je u promatranom razdoblju sudjelovala sa oko 66%. Ostatak ukupne potrošnje energije od oko 34% odnosi se na gubitke energetske transformacije, na vlastitu potrošnju energije u energetskim postrojenjima, na gubitke u transportu i distribuciji energije i na ne-energetsku potrošnju. Pri tome su najznačajniji gubici energetskih transformacija (oko 26%) do kojih dolazi u proizvodnji transformiranih oblika energije (električna energija, toplinska energija, derivati nafte i koks) u postrojenjima za energetske transformacije (termoelektrane, industrijske elektrane, rafinerije, javne kotlovnice i koksara).

Finalna potrošnja energije u Bosni i Hercegovini iznosila je u 2000. godini 134,5 PJ (3 212 600 ten) i do 2005. godine povećana je na 156,04 PJ (3 727 000 ten). U ukupnoj finalnoj potrošnji energije Federacija BiH sudjelovala je s malo više od 66%, udio Republike Srpske bio je malo manji od 32%, dok je udio Distrikt Brčko iznosio oko 2%. Finalna potrošnja energije u energetskim je bilancama podijeljena na sljedeće grupe potrošača: industrija, transport, domaćinstva, usluge i poljoprivreda. U promatranom razdoblju najveći udio u finalnoj potrošnji energije ostvarila su domaćinstva, a njihov udio iznosio je oko 52%. Udom industrije i transporta kretao se na razini od oko 20%, dok je udio usluga i poljoprivrede iznosio oko 6%, odnosno oko 2%.

U potrošnji energije u kućanstvima najznačajniji je energetski ogrjevno drvo s prosječnim udjelom većim od 57%. Prosječni udio električne energije bio je oko 18,7%, a udio ugljena oko 10%. Najznačajniji energenti u industriji bili su električna energija (42%), tekuća goriva......
(22%), ugljen (16%) i prirodni plin (15%). U transportu je udio dizel goriva povećan sa 47,4% na 57,9%, a udio motornog benzina smanjen s 50,6% na 40,5%. Najznačajniji energet je u sektoru usluga bila je električna energija (64%), dok je u poljoprivredi dizel gorivo (88%).

2.1.2. Anketa o potrošnji energije (MODUL 1 – B)

Anketa o potrošnji energije u sektorima kućanstava, industrije i usluga u okviru Modula 1 provedena je s ciljem detaljne prostrane analize pojedinih skupina potrošača i njihove potrošnje energije, karakteristika prisutnih tehnologija i opreme koju koriste. Svrsna anketa je nadopuniti energetsku bilancu s podacima o potrošnji pojedinih energenata u navedenim sektorima jer se ovakvi podaci službene ne prate i ne registrovaju u BiH. Osim toga rezultati ankete direktno ulaze u modele potrošnje energije za baznu 2005. godinu na kojima se temelje projekcije budućih potreba. Kućanstva, industrija i usluge sudjeluju u energetskoj potrošnji BiH s 80 posto i poznavanje energetskih karakteristika ovih potrošača znatno doprinosi razvoju budućih smjernica energetskog sektora.

Energetske analize BiH provedene su odvojeno po entitetima i u distriktu, međutim svaka navedena cjelina promatrana je i kroz nekoliko karakterističnih zona potrošnje energije. Zone su definirane prema granicama pojedinih kantona u Federaciji BiH, odnosno prema dominantnim općinama Republike Srpske. Distrikt Brčko promatran je kao posebna zona. Važno je naglasiti da su zone definirane i prema distribucijama električne energije triju elektroprivreda u BiH. Ta područja nastojala su se razgraničiti zbog različitih načina poslovanja s potrošačima i cijene energije, budućih razvojnih opredjeljenja i drugo. Osim što je se područje razdijelilo na 11 osnovnih zona, svaka zona se je posebno razdvojila i na područja koja obuhvaćaju urbane centre te ostala poluurbana i ruralna područja, što je u konačnici rezultiralo s 21 zonom potrošnje energije. Podjela zona definirana je prema službenim procjenama broja stanovnika i domaćinstava u entitetima i distriktu.

Metodološki koncept anketeranja sličan je za sve skupine potrošača i sastoji se od nekoliko segmenta; započinje s prikupljanjem podataka i obradom svih raspoloživih informacija vezanih uz potrošnju energije, zatim se pristupa organizaciji ankete, terenskom obilasku ciljanih potrošača, unosom podataka i kreiranjem energetske baze podataka te Atlasa pomoću kojih će se prikazivati dobiveni rezultati. Prikupljanje podataka o potrošnji energije putem ankete sastavni je dio koncepta integriranog energetskog planiranja koji se temelji na tzv. kombinaciji bottom-up i top-down pristupa. Drugim riječima, na promatranom području detaljno se promatra potrošnja energije kod krajnjih potrošača koja se zatim agregira i uspoređuje i modelira s ukupnom finalnom potrošnjom koju registriraju subjekti koji se bave distribucijom energije. Na temelju rezultata ankete formiraju se projekcije budućih potreba za energijom, temeljene na unaprijed određenim makroekonomskim, ekološkim i drugim scenarijima.

Ukupne potrebe za energijom u sektorima kućanstava, usluga i industrije u 2005. godini iznosile su 121,81 P.J a raspodijela po entitetima i u Distriktu Brčko, odnosno, prema zonama, prikazana je na slici 1.

Anketa u sektoru kućanstava provedena je na uzorku od 4000 ispitanika, a cilj joj je bio analizirati opće informacije o domaćinstvu, stambenom objektu, karakteristikama grijanja, pripremi tople vode i hrane, ekonomskom stanju, potrebama za energijom te socijalnim aspektima potrošnje energije.

Bilanca potrošnje energije u BiH pokazala je da kućanstva troše ukupno 79,49 TJ, te da je najviše zastupljeni energet u kućanstvima ogrjevno drvo koji sudjeluje u ukupnoj potrošnji s 57%. Zatim slijedi električna energija s udjelom od oko 19%, ugljen s udjelom od 11,3%, toplinska energija sa 4,8% a ostali energeti imaju udio manji od 4%.

TREĆI PROJEKT OBNOVE EES: Studija energetskog sektora u BiH

5
Slika 1. Ukupna potrošnja energije u kućanstvima, uslugama i industriji

Provedba ankete u industriji BiH organizirana je kod 739 subjekata, najvećih potrošača energije koji zajedno troše oko 95% ukupne električne energije u sektoru preradačke industrije a osnovni cilj je bio utvrditi toplinske i netoplinske potrebe za energijom.

Anketom je utvrđeno da ukupna potrošnja finalne energije u sektoru preradačke industrije u 2005. godini iznosi 32,65 PJ, od čega potrošnja u Federaciji BiH iznosi 65%, a u Republici Srpskoj 35%. Udio potrošnje u distriktu Brčko vrlo je mali i gotovo je neznatan.

Ukoliko se potrošnja promatra s aspekta djelatnosti preradačke industrije može se zaključiti da je u BiH energetski najintenzivnija industrija metala koja troši gotovo 59% ukupne finalne energije, zatim slijedi proizvodnja osnovnih sredstava s 24% udjela, industrija polutrajnih proizvoda i ostala industrija s 14% te industrija trajnih proizvoda s 3%.

Potrošnja energije za toplinske namjene iznosi 19,98 PJ i čini 66% od ukupnih energetskih potreba. Netoplinska potrošnja, odnosno električna energija potrebna za rad elektromotora i drugih uređaja, hlađenje, rasvjetu i sl. u 2005. godini iznosila je 12,67 PJ odnosno 34% od ukupnih potreba za energijom u sektoru industrije.

Anketa u uslugama provedena je na uzorku od oko 550 ispitanika a specifičnost joj je ta što je odvojeno vođena po pojedinim granama uslužnih djelatnosti: turizmu i ugostiteljstvu, školstvu, trgovini, zdravstvu, upravi i administraciji te ostalim uslužnim djelatnostima.
Ukupna potrošnja finalne energije u BiH u uslužnom sektoru u 2005. godini iznosila je 9,74 PJ, od čega je 72% potrošeno u uslugama Federacije BiH, 26% u Republici Srpskoj, dok je ostatak, 2%, potrošeno u Distriktu Brčko. Kada se promotri namjena, onda proizlazi da je 55% potrošeno za toplinske namjene, 39% za netopliinsku potrošnju, dok je ostala energija potrošena u svrhu hlađenja prostora. Najintenzivnija potrošnja ostvarena je u sektoru trgovine koja sudjeluje s 32% u ukupnim potrebama, 20% potrošeno je u sektoru turizma i ugostiteljstva te isto toliko u upravi i administraciji, dok je 17% potrošeno u zdravstvu. Najmanje troši sektor školstva, 4% od ukupno utrošene energije.

2.1.3. Predviđanje potrošnje energije (MODUL 1 – C)

U ovoj su studiji analizirana tri scenarija razvoja energetskih potrošnji. U referentnom scenariju S2 pretpostavljen je relativno brz razvoj BDP Bosne i Hercegovine, koji bi do 2020. godine bio 2,5 puta veći nego u 2005. godini. Međutim, potrošnja finalne energije rasla bi znatno sporije, za faktor 1,63 s elastičnošću 0,52. U scenariju S3 s mjerama povećanja toplinske industrije, energijska razlika prerađivačke industrije u uslužnom sektoru je consumna, pa se promet relativno intenzivno, međutim teretni promet troši vrlo malo goriva, što je karakteristika uslužnog sektora i u ekonomski razvijenim i tranzicijskim zemljama. U ukupnoj potrošnji finalne energije od fosilnih goriva za toplinske namjene najzastupljeniji je ugljen, pa prirodni plin te derivati nafte.

Karacteristike polazne 2005. godine su slabo razvijena industrija, pa time i relativno niska zastupljenost finalne potrošnje prerađivačke industrije u ukupnoj potrošnji finalne energije. Putnički je promet relativno intenzivan, međutim teretni promet troši vrlo malo goriva, što je proporcionalno slaboj razvijenosti industrije, za koju teretni promet i obavljaju prometne usluge.

U svim scenarijima predviđen brži rast BDP prerađivačke industrije od ukupnog gospodarstva. Energetska intenzivnost prerađivačke industrije se naglo smanjuje, ali sve zajedno rezultira bitnim povećanjem strukturnog udjela prerađivačke industrije u ukupnoj potrošnji finalne energije. Jednako tako, s rastom mobilnosti i teretnog prometa, raste i udio prometa u potrošnji finalne energije. To vrijedi i za uslužni sektor, a jedino se znatno smanjuje udio kućanstava, iako apsolutna potrošnja kućanstava raste u svim scenarijima, pa i u scenariju S3.

U odnosu na referentni scenarij S2, koji u sebi sadrži sve elemente općeg tehničkog napretka, koji preko uvoznih i licencnih tehnologija, prometnih sredstava i uređaja djeluje na relativno smanjenje potrošnje energije, u scenariju S3 pretpostavljena je intervencija države u zakonskoj regulativi, institucionalno i organizacijski u cilju dodatnog povećanja energetske učinkovitosti i primjene obnovljivih izvora energije. Utvrđeno je da je najveći potencijal moguće racionalizacije potrošnje energije u poboljšanju toplinske izolacije oštrijim propisima i kontrolom u novogradnjama, a posebno dobro organiziranim mjerama smanjenja toplinskih gubitaka u postojećem stambenom fondu. Naime, u tom sektoru potrošnje nije moguće direktno utjecaj tehničkog napretka i transfera tehnologija kao u ostalim
sektorima potrošnje. S obzirom da se radi o dugoročnom procesu, iz provedenih analiza je jasno da svako kašnjenje s početkom akcije pomiče i rezultate takvih akcija sve dalje i dalje na vremenskoj skali. Međutim, ostvarenje poboljšanja toplinske izolacije postojećeg stambenog fonda za 10%, kao i instalacija oko 20 000 solarnih kolektora u kućanstvima do 2020. godine neće biti moguće samo organizacijskim i promotivnim mjerama, već će za veći dio ostvarenja trebati i poticanja. Poticanje je u ovom scenariju predviđeno, kako bi se pokazalo da se i s tim mjerama treba početi što prije jer je vrijeme kumulativnog djelovanja relativno dugo.

Do 2020. godine se ne očekuje bitno povećanje današnje razine potrošnje ogrjevnog drveta, a u scenarijima s mjerama ona bi se i smanjila. S rastom broja stambenih jedinica i stanova u zgradama u gradovima, daljinsko grijanje se povećava za 76% do 2020. godine, ali u scenarijima s mjerama radi bolje toplinske izolacije i uvođenja mjerenja potrošnje topline po stanovima ta je potrošnja za 25% manja nego u referentnom scenariju. Potrošnja motornih goriva brzo raste, a u strukturi potrošnje dizel konstantno povećava svoj udio. Potrošnja ugljena u industriji raste, a u kućanstvima se smanjuje, a ukupno u svim scenarijima lagano raste. U svim scenarijima raste i potrošnja derivata nafte, a njihov udio u ukupnoj finalnoj potrošnji ostaje na istoj razini do 6%. Najveći porast je predviđen za prirodni plin čija bi potrošnja do 2020. godine porasla čak za 3,8 puta u referentnom scenariju, odnosno 2,6 puta u nižem scenariju. Potrošnja električne energije raste u svim scenarijima, za 64% u referentnom scenariju i za 47% u nižem.

Uz relativno dinamičan rast gospodarstva za sva tri scenarija, predviđena potrošnja finalne energije je također u stalnom rastu. Uz konzervativan pristup energetskoj učinkovitosti i obnovljivim izvorima u referentnom scenariju S2 i nižem scenariju S1, sporiji rast potrošnje finalne energije u nižem scenariju S1 je posljedica sporijeg ekonomskog rasta. Međutim, energetska intenzivnost u nižem scenariju S1, mjerena kao omjer potrošnje finalne energije i ukupnog BDP-a, nešto je viša nego u referentnom scenariju (slika 2).

Za razliku od toga, u scenarijima s mjerama S3, uz isti ekonomski razvoj kao i u referentnom scenariju S2, smanjena potrošnja izolacije je rezultat zakonodavnog okvira, institucionalnih i organizacijskih mjer, koje pokreće i organizira država. Uz smanjenja potrošnje u svim sektorima, ocijenjena je najveća mogućnost djelovanja na poboljšanje toplinske izolacije novih zgrada i obiteljskih kuća, te pogotovo postojećeg stambenog fonda. Rezultat toga je najmanja energetska intenzivnost scenarija S3 u odnosu na ostala dva (slika 3). Od 2005. do 2020. godine energetska intenzivnost je smanjena za 42%, što je ukupni rezultat dinamičnog ekonomskog rasta, općeg tehničkog napretka i posebno dobro organiziranih i provedenih mjera u državi.

Unatoč znatnom poboljšanju energetske intenzivnosti u sva tri scenarija, potrošnja finalne energije po stanovniku će rasti. U referentnom scenariju S2 to povećanje potrošnje finalne energije po stanovniku u petnaest godina je 57%, a za ostala dva scenarija je podjednako niže (slika 4).

Potrošnja finalne električne energije po stanovniku će u scenarijima S2 porasti sa 2717 kWh u 2005. godini na 4311 kWh u 2020. godini, što je povećanje za 59%. U scenarijima s mjerama to je povećanje 52%, a u nižem scenariju S1 42% (slika 5).
Bosna i Hercegovina

Federacija BiH

Republika Srpska

Slika 2. Ukupna potrošnja finalne energije za tri scenarija
Slika 3. Energetske intenzivnosti u BiH za tri scenarija

Slika 4. Potrošnja energije po stanovniku za tri scenarija

Slika 5. Potrošnja ukupne električne energije po stanovniku za tri scenarija
2.1.4. Energetske bilance do 2020. godine (MODUL 1 – D)

Energetske bilance za razdoblje do 2020. godine izrađene su korištenjem rezultata ostalih modula, a kao temeljni podaci u konstrukciji energetskih bilanci iskorištene su prognoze finalne potrošnje energije u svim sektorima. S obzirom na to da je prognoza finalne potrošnje energije izrađena za tri scenarija (S2 - referentni scenarij, S3 - scenarij s mjerama i S1 - niži scenarij) energetske bilance su također izrađene za ta tri scenarija za Bosnu i Hercegovinu, za Federaciju BiH, za Republiku Srpsku i za Distrikt Brčko i to za 2010., 2015. i 2020. godinu.

Ukupna potrošnja energije u Bosni i Hercegovini povećat će se do 2020. godine na 395,12 PJ (9 437 200 ten) prema referentnom scenarij S2. U dva preostala scenarija, S3 i S1, ta će potrošnja biti manja i iznositi 366,83 PJ, odnosno 360,53 PJ. Udjeli pojedinih entiteta neće se značajnije promijeniti u odnosu na proteklo razdoblje te će iznosiću 64% za Federaciju BiH, oko 35% za Republiku Srpsku i malo više od 1% za Distrikt Brčko. Kada je riječ o potrošnji pojedinih energetnata može se reći da će se u odnosu na proteklo razdoblje u 2020. godini glavni energet ostati ugljen te će njegov udio u pojedinim scenarijima varirati od 48% do 52%. U odnosu na proteklo razdoblje povećat će se i udio tekućih goriva tako da će ona u 2020. godini sudjelovati s oko 23%. Udio obnovljivih izvora (biomasa, biodizel, energija vjetra i energija Sunca) smanjit će se u odnosu na proteklo razdoblje te će za pojedine scenarije iznositi od 13% do 14%. Suprotno tome udio prirodnog plina će se povećati i iznositi od 9% do 12% za pojedine scenarije u 2020. godini. Ostatka ukupno potrebne energije činit će hidroenergija i saldo izvoza i uvoza električne energije.

Analizom ukupne potrošnje energije prema namjenama korištenja došlo se do rezultata da će finalna potrošnja u 2020. godini u pojedinim scenarijima sudjelovati sa 62,5% do 64,5%. Ostatak ukupne potrošnje energije činit će gubici energetskih transformacija, vlastita potrošnja energije u energetskim postrojenjima, gubici transporta i distribucije energije i ne-energetska potrošnja. U tim kategorijama najveći udio imat će gubici energetskih transformacija, koji će u pojedinim scenarijima u 2020. godini sudjelovati s 25% do 27%.

Finalna će se potrošnja energije u razdoblju od 2005. do 2020. godine povećati sa 156,04 PJ (3 727 000 ten) na 258,27 PJ (6 168 600 ten) za scenarij S2. U scenarijima S3 i S1 finalna potrošnja energije bit će manja tek u 2020. godini iznositi 229,43 PJ, odnosno 225,33 PJ. Udjeli pojedinih entiteta u ukupnoj finalnoj potrošnji energije neće se u buducnosti značajnije mijenjati u odnosu na prethodno razdoblje, tako da će udio Federacije BiH biti malo manji od 67%, udio Republike Srpske malo manji od 32%, a udio Distrikta Brčko manji od 2%. Kada je riječ o potrošnji pojedinih energetnata onda će tekuća goriva ostvariti najveći udio (oko 29%) i on će biti veći u odnosu na prethodno razdoblje. Udio električne energije u 2020. godini kretat će se za pojedine scenarije od 22% do 24%, obnovljivih izvora oko 20%, a prirodnog plina od 14% do 17%. Udio ugljena smanjit će se u odnosu na prethodno razdoblje te će iznosić najvećim udjelom u finalnoj potrošnji energije sudjelovati i u budućnosti, ali će se njihov udio smanjiti u odnosu na proteklo razdoblje te će iznosiću od 38,5% do 42,3% u 2020. godini. Najveća potrošnja energije ostvarit će se u referentnom scenariju S2 te će u 2020. godini iznosiću 104,25 PJ (2 489 900 ten). Najveći udio u potrošnji energije ostvarit će obnovljivi izvori (46,9 % do 49,2 %), električna energije (18,5 do 21,3%) i prirodn plin (10,1% do 15,2%).
Industrija će u finalnoj potrošnji energije sudjelovati s 27,7% do 29,2%, a prema scenariju S2 ta će potrošnja iznositi 74,72 PJ (1 748 600 ten). Najznačajniji oblici energije ostvarit će sljedeće udjelove u pojedinim scenarijima: električna energija (33,6% do 36,2%), plinovita goriva (31,6% do 34,3%) i ugljen (14,5% do 15,2%).

Udio transporta u finalnoj potrošnji energije kretat će se od 20,6% do 21,6%, a potrošnja energije prema S2 će u 2020. godini iznositi 53,47 PJ (1 277 100 ten). Udio motornih goriva će u pojedinim scenarijima varirati od 90,8% do 96,5%.

Potrošnja energije u sektoru usluga i poljoprivrede za S2 će u 2020. godini iznositi 19,5 PJ (465 800 ten), odnosno 6,33 PJ (151 300 ten). Udio ova dva sektora u finalnoj potrošnji energije iznosit će od 7% do 7,9%, odnosno od 2,4% do 2,8%.

2.2. Potrošnja električne energije (MODUL 2)

Prilikom predviđanja finalne potrošnje električne energije pretpostavljeno je da će dio postojeće potrošnje koji se bilancira kao ne-tehnički gubitak prijeći u mjerenom potrošnju, a da će dio ove potrošnje nestati kao rezultat provođenja mjera protiv neovlaštene potrošnje. Pretpostavka je da će tehnički gubitci distribucije biti na razini od 6%, te da će postojati udio ne-tehničkih gubitaka na razini do 2%. U razdoblju do 2015. godine pretpostavljeno je postupno smanjenje gubitaka u svim distribucijama na prosječnu razinu od 8%. U razdoblju do 2015. godine smanjenje gubitaka u distribucijama na prosječnu razinu od 8%. U razdoblju do 2015. godine smanjenje gubitaka u distribucijama koriste se kao ulazni podatak za Modul 3.

Na području BiH potrošnja električne energije na mreži prijenosa (uključeni gubici prijenosa i distribucije) u scenariju S2 - referentni sa 11,3 TWh u 2005. godini raste na 17,6 TWh u 2020. godini ili za oko 55%, tj. prosječnom stopom od 3%/god. Prosječna godišnja stopa porasta potrošnje električne energije na mreži prijenosa u scenariju S3 - s mjerama iznosi 2,7% što predstavlja ukupno povećanje za 48%. Prosječna godišnja stopa porasta potrošnje električne energije na mreži prijenosa u scenariju S1 - niži iznosi 2,2%. tj. ukupno povećanje do 2020. godine iznosi 38%. Očekivano vršno opterećenje EES-a BiH na kraju razdoblja iznosi između 2660 i 2960 MW, a faktor opterećenja sustava povećava se sa sadašnjih 66% na 68%.

Na području Federacije BiH ukupna potrošnja električne energije na mreži prijenosa u scenariju S2 - referentni sa 7,6 TWh u 2005. godini raste na 11,9 TWh u 2020. godini ili za oko 55%, tj. prosječnom stopom od 3%/god. Prosječna godišnja stopa porasta potrošnje električne energije na mreži prijenosa u scenariju S3 - s mjerama iznosi 2,7% što predstavlja ukupno povećanje za 48%. Prosječna godišnja stopa porasta potrošnje električne energije na mreži prijenosa u scenariju S1 - niži iznosi 2,3% što rezultira ukupnim povećanjem potrošnje do 2020. godine za 40%. Očekivano vršno opterećenje na području Federacije BiH
na kraju razdoblja iznosi između 1940 i 1760 MW. Očekuje se povećanje faktora opterećenja sustava sa sadašnjih 68% na 70%.

Na području Republike Srpske (područje koje opskrbljuje Elektroprivreda RS bez Distrikta Brčko) potrošnja električne energije na mreži prijenosa u scenarij S2 - referentni sa 3,4 TWh u 2005. godini raste na 5,4 TWh u 2020. godini ili za 57%, tj. prosječnom stopom od 3,1%/god. Prosječna godišnja stopa porasta ukupne potrošnje električne energije na mreži prijenosa u scenarij S3 – s mjerama iznosi 2,8%, dok za scenarij S1 - niži iznosi 2,2%. Vršno opterećenje na kraju razdoblja iznosi između 900 i 1020 MW. Očekuje se povećanje faktora opterećenja sustava sa sadašnjih 58% na 61%.

Na području Distrikta Brčko bruto potrošnja električne energije u distribuciji u scenarij S2 - referentni sa 237 GWh u 2005. godini raste na 266 GWh u 2020. godini ili za 12%, tj. prosječnom stopom od 0,8%/god. Prosječna godišnja stopa porasta ukupne potrošnje električne energije na ulazu u distribucijsku mrežu u scenarij S3 - s mjerama iznosi 0,4%, a u scenarij S1 - niži iznosi 0,35%.

2.3. Proizvodnja električne energije (MODUL 3)

U Modulu 3 predložen je plan razvoja (Master plan) proizvodnje električne energije za Bosnu i Hercegovinu do 2020. godine. Na području BiH postoje tri elektroprivredne tvrtke (Elektroprivreda BiH, Elektroprivreda HZHB i Elektroprivreda RS) koje su nezavisne u izgradnji novih elektrana i odgovorne su za opskrbu kupaca na području koje pokrivaju. Tri elektroprivrede su u većinskom vlasništvu pojedinih entiteta (Federacija BiH i Republika Srpska). Osim toga, postoje i druge tvrtke i inicijative za izgradnju novih elektrana. Problematika se promatra u svjetlu otvaranja tržišta na ulazu u distribucijsku mrežu u scenarij S3 D s mjerama, ali postoje i druge tvrtke i inicijative za izgradnju novih elektrana.

Za određivanje Master plana proizvodnje korišten je programski paket WASP-IV. WASP model određuje optimalni plan izgradnje po načelu najmanjeg troška. Ulazni podaci o tehničkim i ekonomskim karakteristikama postojećih elektrana, revitalizacijama postojećih elektrana i elektranama kandidatima prikupljeni su od elektroprivrednih tvrtki. Na području BiH postoji određeni broj projekata koji se mogu realizirati u suradnji sa susjednim državama. Ti projekti nisu razmatrani kao ozbiljni kandidati za izgradnju s obzirom da trenutno nisu definirani odnosi između zainteresiranih strana. Cijene domaćeg ugljena i uvoznog prirodnog plina za proizvodnju električne energije do 2020. godine su pretpostavljene temeljem postojećih cijena u BiH, na regionalnom tržištu i očekivanom razvoju cijena. Previđena je mogućnost uvoza električne energije uz cijenu 55 EUR/MWh. Iz Modula 2 preuzeta je potrošnja električne energije na mreži prijenosa za sva tri scenarija (S2 - referentni, S3 - s mjerama i S1 - niži). Optimizacija izgradnje rađena je na razini BiH, na razini dva entiteta i na razini tri elektroprivrede.

Ostatak se proizvodi u termoelektranama. Ukupni trošak rada i razvoja sustava do 2020. godine iznosi 6062,9 milijuna EUR. Trošak izgradnje iznosi 1595,0 milijuna EUR, od čega se 608,8 milijuna odnosi na revitalizaciju postojećih elektrana. Navedeni rezultati odnose se na zadovoljenje potrošnje električne energije na području BiH. Za slučaj kada postojeće i nove termoelektrane rade s povećanim brojem sati moguće je ostvariti izvoz električne energije nakon 2011. u prosječnom iznosu od 1700 GWh/god. U scenarijima S3 i S1 u pogon ulaze iste elektrane kao i u scenariju S2 - referentni samo s određenim vremenskim pomakom, s obzirom na sporiji porast potrošnje električne energije u tim scenarijima.

Treba imati u vidu da je ulazak u pogon bilo koje elektrane (osim HE Mostarsko Blato u izgradnji) do 2013. godine optimističan cilj s obzirom na vrijeme potrebno za izgradnju hidro i termoelektrana uzimajući u obzir sve potrebne predrađe. Sa stanovišta EES-a BiH rezultati simulacija ukazuju da u razdoblju do 2013.-2015. (ovisno o scenariju potrošnje) postoji potreba za izgradnjom jednog većeg termoenergetskog objekta, ali će realizacija takvog objekta u promatranom razdoblju ovisiti u velikoj mjeri o pripremljenosti šireg administrativnog sustava.

2.4. Prijenosna mreža (MODUL 4)

Plan razvoja prijenosne mreže temelji se na kriterijima definiranim unutar Mrežnog kodeksa, a izrađen je u skladu s optimalnim planom izgradnje novih elektrana na području BiH, referentnim scenarijem potrošnje električne energije i opterećenja EES, te planom razvoja distribucijske mreže. Planirana konfiguracija prijenosne mreže provjerena je s obzirom na nesigurnosti koje predstavljaju izrazito utjecaj faktor u dimenzioniranju prijenosne mreže i izazivaju značajan rizik za pojedine investicije.

Za izgradnju i revitalizaciju prijenosne mreže Bosne i Hercegovine, te u sistem vođenja, trebat će u razmatranom razdoblju do 2020. godine uložiti oko 229 mil. €, od čega oko 45% u razvoj i izgradnju (103 mil. €), oko 52% u revitalizaciju (118 mil. €) te 3% u sistem vođenja (8 mil. €) (tablica 4). Najveći dio sredstava namijenjenih za razvoj i revitalizaciju odnosi se na 110 kV mrežu. U razdoblju do 2020. godine trebati će izgraditi oko 550 km novih vodova 110 kV, revitalizirati oko 1282 km vodova 110 kV te 95 km vodova 220 kV. Investicije u 400 kV mrežu bit će zanemarive, a odnose se samo na priključak novih proizvodnih postrojenja (uvod/izvod postojećih vodova, nova polja 400 kV, nove TS 400/110 kV). Razvoj 220 kV mreže će stagnirati, a eventualno će trebati pojačavati pojedine transformacije 220/110 kV (Mostar 4, Zenica 2).
<table>
<thead>
<tr>
<th>Rb</th>
<th>Zaključci</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Na sadašnjoj razini izgrađenosti prijenosne mreže BiH sigurnost pogona je nezadovoljavajuća unutar 110 kV mreže Hercegovine i 110 kV mreže banjalučkog područja.</td>
</tr>
<tr>
<td>2.</td>
<td>S aspekta naponskih prilika izgrađenost mreže 110 kV je nezadovoljavajuća u Hercegovini, a naponski problemi mogu se očekivati i na području Goražda, Foče i Pala radi trenutne neraspoloživosti transformatora 400/110 kV u Višegradu.</td>
</tr>
<tr>
<td>3.</td>
<td>Radi isključenosti voda 110 kV Bijeljina – Lešnica između BiH i Srbije smanjena je sigurnost napajanja područja Bijeljine i Brčkog pa je potrebno postići dogovor s EMS o trajnom pogonu tog voda.</td>
</tr>
<tr>
<td>4.</td>
<td>U situaciji pune raspoloživosti svih vodova i transformatora isti su relativno slabo opterećeni, te postoji dovoljno rezerve za daljnji porast opterećenja i prijenos električne energije.</td>
</tr>
<tr>
<td>5.</td>
<td>Unutar današnje konfiguracije prijenosne mreže BiH postoji dvadesetak radijalno napajanih TS 110/x kV sa strane 110 kV mreže. U budućnosti je potrebno osigurati dvostrano napajanje svih TS 110/x kV.</td>
</tr>
<tr>
<td>8.</td>
<td>Radi priključka razmatranih VE na području Hercegovine po principu ulaz/izlaz na postojeće 110 kV vode (VE Mesihovina, VE Borova Glava, VE Velika Vlajna) nije potrebno dodatno pojačavati mrežu, a iste povoljno djeluju na rasterećenja kritičnih vodova 110 kV i transformacije 220/110 kV u Mostar 4.</td>
</tr>
<tr>
<td>9.</td>
<td>U razdoblju do 2010. godine potrebno je revitalizirati 12 nadzemnih vodova 110 kV u ukupnoj duljini 241,6 km, zamijeniti 14 transformatora 110/x kV i popraviti jedan transformator 400/110 kV (HE Višegrad), te zamijeniti 38 polja 110 kV i 10 srednje naponske polja.</td>
</tr>
<tr>
<td>11.</td>
<td>Radi manjih investicija u pojačanje i revitalizaciju mreže u razmatranom je razdoblju između 2010. i 2015. godine povoljno uložiti novčana sredstva za osiguravanje dvostranog napajanja svih TS 110/x kV sa strane 110 kV mreže (~11 mil. € ukupno), te rješavanje problematike krutih spojeva u mreži (~3. mil. €).</td>
</tr>
<tr>
<td>12.</td>
<td>U razdoblju 2010. – 2015. godine potrebno je revitalizirati 16 vodova 110 kV ukupne duljine 305 km, zamijeniti devet transformatora 110/x kV, te 37 polja 110 kV i 2 srednje naponska polja.</td>
</tr>
<tr>
<td>14.</td>
<td>U razdoblju 2015. – 2020. godine potrebno je revitalizirati električke dijelove jednog voda 220 kV (94,7 km), 46 vodova 110 kV ukupne duljine 735 km, zamijeniti dva transformatora 220/110 kV, trinaest transformatora 110/x kV i tri transformatora 35/10 kV u vlasništvu Elektroprenos-Elektroprijenos BiH, te zamijeniti 3 polja 220 kV, 98 polja 110 kV i 23 srednje naponske polja.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16.</td>
<td>U slučaju izgradnje velikih termoenergetskih objekata izuzev onih uključenih u optimalan plan izgradnje elektrana (TE Stanari, TE Gacko 2) poput TE Ugljevik 2, TE Kongora i TE Bugojno, biti će potrebno formirati nove veze 400 kV unutar BiH prvenstveno radi priključka tih elektrana, te dodatno pojačati instalirane snage transformacije TS 400/(220)/110 kV i dijelove 110 kV mreže.</td>
</tr>
<tr>
<td>18.</td>
<td>Unutar EES BiH postoje dovoljne mogućnosti Q/U regulacije koristeći sinkrone generatore i mrežne transformatore pa neće biti potrebno ugrađivati dodatne kompenzacijske uređaje.</td>
</tr>
<tr>
<td>19.</td>
<td>Radi osiguravanja dovoljnih rezervi P/f i Q/U regulacije potrebno je uvesti naknadu proizvođačima za pružanje takvih pomoćnih usluga koja će ih stimulirati da iskazuju stvarne mogućnosti svojih generatora za sudjelovanje u pomoćnim uslugama, a isto vrijedi i za ostale pomoćne usluge (npr. crni start).</td>
</tr>
<tr>
<td>23.</td>
<td>Novčana sredstva potrebna za razvoj i revitalizaciju prijenosne mreže potrebno je osigurati iz naknada za prijenos električne energije, a dijelom i iz sredstava prikupljenih od alokacije prekograničnih kapaciteta i tranzita za potrebe trećih strana, te eventualno kreditnim zaduživanjem.</td>
</tr>
<tr>
<td>Preporuka</td>
<td>Nadležna institucija</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Uvesti naknade za pružanje pomoćnih usluga sistemu.</td>
<td>DERK</td>
</tr>
<tr>
<td>Provesti projekt očitanja brojila.</td>
<td>NOS BiH</td>
</tr>
<tr>
<td>Nabaviti harware i software za potrebe tržišta.</td>
<td>NOS BiH</td>
</tr>
<tr>
<td>Osigurati dovoljnu rezervu P/f regulacije.</td>
<td>NOS BiH</td>
</tr>
</tbody>
</table>

Tablica 3. Preporuke modula 4
2.5. Distribucija električne energije (MODUL 5)

U okviru ovog modula razmatrana je djelatnost distribucije električne energije koju u elektroenergetskom sustavu BiH obavljaju četiri operatora distribucijskog sustava: Elektroprivreda Bosne i Hercegovine (EPBiH), Elektroprivreda Republike Srpske (ERS), Elektroprivreda Hrvatske zajednice Herceg Bosne (EPHZHB) i Elektroprivreda Republike Hrvatske (EDDB). Ukupna bruto potrošnja (s uključenim gubicima) transformacije u EPBiH i 24% u ERS, što daje udio oko 12% na razini Bosne i Hercegovine.

Na području Bosne i Hercegovine u pogonu je 121 TS 110/SN u vlasništvu operatora prijenosnog sustava, preko kojih se opskrbljuju kupci na 35 kV, 10(20) kV i niskom naponu. U vlasništvu (punom ili djelomičnom) operatora distribucijskog mreža je 179 TS 35/10 kV. Izravna transformacija prevladava na području Elektroprivreda Bosne i Hercegovine (EPBiH), u visokoj mjeri je prisutna u DP Jug i DP Centar (EPHZHB) te ED Bihać (EPBiH). Mreža 35 kV je izrazito razvijena u ED Tuzla (EPBiH) i Elektro Doboj (ERS). Ukupna duljina mreže 10(20) kv na području Bosne i Hercegovine je 21.930 km, mreže niskog napona 62.400 km, a transformaciju SN/NN čini 19.540 transformatorskih stanica ukupne ugrađene snage 5.340 MVA. U pogonu na naponskoj razini 20 kV je 4% transformacije u EPBiH i 24% u ERS, što daje udio oko 12% na razini Bosne i Hercegovine. Ostatak transformacije je u pogonu na 10 kV, a udio ugrađenih preklopih transformatora 10(20)/0,4 kV je 28% u EPBiH i 5% u ERS, odnosno 12% na razini Bosne i Hercegovine. U mreži niskog napona relativno visoki je udio nadzemne mreže izvedene samonosivim kabelskim snopom, što upućuje na značajnu obnovu mreže niskog napona, ali je unatoč tome još uvijek gotovo 30% mreže vrlo malog presjeka (Al/Fe 25 mm² ili manjeg). Prosječna duljina mreže niskog napona po transformatorskoj stanici SN/NN je od 2,7 km u EPHZHB, preko 3,0 km u EPBiH, 3,7 u EDBD do 3,9 u ERS, što daje prosjek 3,4 km na razini Bosne i Hercegovine.

Razvoj sustava distribucije električne energije temelji se na nekoliko jednostavnih načela. Na razini srednjeg napona cilj je postojeći sustav, temeljen na dva stupnja transformacije (110/35 kV i 35/10 kV) i dvije mreže srednjeg napona (35 kV i 10 kV) transformirati u sustav s jednom razinom srednjeg napona (20 kV) i jednom izravnom transformacijom (110/20 kV).
Dakle, preporučena je primjena dva djelomično povezana načela: postupna zamjena naponske razine 10 kV sa 20 kV i postupno uvođenje izravne transformacije 110/10(20) kV te ukidanje mreže 35 kV. Radi se o dugoročnom i nejednolikom procesu, koji u nadzemnoj vangradskoj mreži započinje zamjenom naponske razine 10 kV sa 20 kV, a u gradovima uvođenjem izravne transformacije 110/10 kV. Pitanje smisla obnove postojeće i pogušćenje izgradnje nove mreže 35 kV i transformacije 35/10(20) kV u vangradskim područjima je sljedeća faza, koja mora uzeti u obzir sve bitne lokalne osobine distribucijske mreže. Čitav proces završava prijelazom gradske kabelske mreže na pogon na naponskoj razini 20 kV.

Budući da je u Bosni i Hercegovini po TS 10(20)/0,4 kV prosječno priključena prevelika duljina mreže niskog napona, uglavnom malog presjeka vodiča, razvoj mreže niskog napona usmjeren prema strukturi postignutoj u razvijenim sustavima treba temeljiti na sljedećim načelima: kratki izvodi niskog napona, razvoj mreže niskog napona relativno male Nazivne snage i kratkom priključenom mrežom niskog napona. U skladu s takvim ciljevima, nisu planirana veća ulaganja u vodove niskog napona, već rješavanje opskrbe povećanog opterećenja kroz povećanje broja izvoda niskog napona, što se postiže ugradnjom novih TS 10(20)/0,4 kV u postojeću mrežu.

Pri planiranju razvoja složenog sustava kakav je distribucija električne energije potrebno je planirati stalnu modernizaciju, odnosno postupnu zamjenu pojedinih uređaja novim i modernijim te ugradnju suvremenih uređaja koji doprinose pouzdaniji rad distribucijske mreže i kvalitetnijem napajanju njenih korisnika. Tu se u prvom redu misli na dugoročne strateške projekte, na primjer smanjenje gubitaka električne energije i snage, smanjenje neovlaštene potrošnje preko konstrukcijskih priključaka i postavljanjem mjernih mjesta na fasadu ili granici vlasništva posjeda, automatizaciju i daljinsko upravljanje mrežom, ugradnju elektroničkih brojila električne energije, omogućavanje daljinskog čitavanja i upravljanja potrošnjom i slično.

Na temelju navedenih kriterija dobiven je potrebni iznos i dinamika ulaganja u distribucijsku djelatnost na području Bosne i Hercegovine, koji je po operatorima distribucijskog sustava i po entitetima prikazan u tablici 5. Udjeli pojedinih operatora distribucijske mreže u ukupnim troškovima distribucijske djelatnosti na razini BiH su: EPBiH 40%, EPHZHB 12%, ERS 46% i EDBD 2%.

| Tablica 5. Pregled ulaganja u distribucijsku djelatnost u 000 € (modul 5) |
|-------------------|-----------------|----------------|-----------------|-----------------|
| Bosna i Hercegovina | 336 243 | 310 281 | 272 255 | 918 779 |
| Federacija Bosne i Hercegovine | 169 806 | 165 778 | 142 394 | 477 978 |
| Elektroprivreda Republike Srpske | 160 451 | 138 180 | 125 292 | 423 923 |
| Elektroprivreda Bosne i Hercegovine | 129 734 | 126 265 | 109 967 | 365 966 |
| Elektroprivreda Hrvatske zajednice Herceg Bosne | 40 073 | 39 514 | 32 428 | 112 015 |
2.6. Okvir za regulaciju i restrukturiranje elektroenergetskog sektora (MODUL 6)

U ovom modulu daje se pregled dokumenata Europske unije relevantnih za elektroenergetsku politiku BiH uključujući i prijedlog trećeg liberalizacijskog paketa te se analiziraju obveze BiH preuzete međunarodnim ugovorima. U Izvještaju se prezentiraju strateško-planski dokumenti reforme elektroenergetskog sektora, prikazuju ustavne odredbe relevantne za nadležnost za područje energetike, odredbe zakona i provedbenih propisa mjerodavnih za elektroenergetski sektor BiH, odnosno njegovu reformu, identificiraju značajke i odgovornosti institucija mjerodavnih za elektroenergetski sektor BiH te iznose karakteristike tržišta električne energije uz osnovne značajke postojećeg i perspektive budućeg regionalnog tržišta električne energije. Daljnji tijek reforme, institucionalne, strukturalne i normativne promjene u sektoru te dinamika otvaranja tržišta definirane su velikim dijelom obvezama preuzetim Ugovorom o uspostavi Energetske zajednice koji je stupio na snagu 2006. godine.

Način NOS BiH praktički obavlja funkciju operatora sustava i operatora tržišta, a što strategički i planski dokumenti reforme elektroenergetskog sektora, prikazuju ustavne odredbe institucija/subjekata te pedeset izdanih licenci, može se reći da je planiranu učinak izostao u sektoru (MODUL 6) liberalizacijskim paketom EU) te ne predstavlja barijeru funkcioniranju elektroenergetskog sektora.

Slijedom navedenog, a polazeći od postojećih ustavnih i zakonskih određenja, u izvješću je predloženo tridesetak normativnih i organizacijskih aktivnosti za otklanjanje barijera u provođenju reforme, od kojih su značajnije navedene u tablici 6.

Jedan od prijedloga odnosi se i na izradu "energetskog" zakona na državnoj razini. Njime bi se, kao temeljnim akтом za područje energetike BiH, definirala odnosno detaljnije razradila sljedeća pitanja važna za uspostavu jedinstvenog tržišta BiH:

- planiranje energetskog razvoja BiH (izrada i provedba strategije i drugih razvojnih dokumenata utvrđenih strategijom),
- donošenje dugoročnih i godišnjih energetskih bilanci za BiH,
- sigurnost opskrbe energijom u BiH (pogonska sigurnost mreže, preduviđanje bilance proizvodnje i potrošnje za buduće razdoblje, investicijske namjere operatora prijenosnog sustava u transportni sustav, načela upravljanja zagušenjima, postojeći i planirani vodovi prijenosnog sustava i dr.)
- uspostava modela poticanja proizvodnje električne energije iz postrojenja koja koriste obnovljive izvore energije i kogeneracijskih postrojenja te provedba mjera učinkovitog korištenja energije,
- transport energije umreženim sustavima (jedinstveni kriteriji za transport energije i pristup sustavima, jedinstveno vođenje, pravno i funkcionalno razdvajanje djelatnosti transporta energije od ostalih energetskih djelatnosti),
- licenciranje energetskih djelatnosti (jedinstveni kriteriji, uvjeti i rokovi licenciranja, važenje na cijelom teritoriju BiH),
- jedinstvena metodologija tarifiranja reguliranih djelatnosti u BiH,
- jedinstvena dinamika i uvjeti otvaranja tržišta energije u BiH (promjena opskrbljivača).

"Energetski zakon BiH" temeljio bi se na načelu funkcioniranja jedinstvenog energetskog sustava BiH odnosno: načelu jedinstvenog funkcioniranja, vođenja i regulacije transporta energije umreženim sustavima u BiH (dakle elektroenergetskog i plinskog sustava); načelu pravnog i funkcionalnog razdvajanja djelatnosti transporta energije od ostalih energetskih djelatnosti; načelu jedinstvene metodologije tarifiranja za regulirane djelatnosti na cijelom teritoriju BiH; načelu jedinstvenog sustava licenciranja energetskih djelatnosti i punopravnog važenja licenci na cijelom području BiH uključujući i jedinstvo licence za trgovinu električnom energijom na teritoriju BiH i izvan njenih granica te načelu jedinstvene dinamike otvaranja tržišta energije i uvjeta promjene opskrbljivača. Predložena načela ne zadiru u postojeće zakonske i vlasničke odnose nad energetskim sektorom i njihova provedba ne prejudicira eventualne promjene vlasničke strukture u budućem razdoblju.
<table>
<thead>
<tr>
<th>Preporuka</th>
<th>Nadležna institucija</th>
<th>Rok provedbe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetska strategija na državnoj razini</td>
<td>Savjet ministara BiH Vlada FBiH Vlada RS</td>
<td>9-12 mjeseci nakon izrade ove studije</td>
</tr>
<tr>
<td>• Pravilnik o priključcima na distribucijsku mrežu</td>
<td>JP EP BIH JP EP HZHB</td>
<td>u roku od 4 mjeseca od dana stupanja na snagu Općih uvjeta za isporuku električne energije</td>
</tr>
<tr>
<td>• Cjenik troškova priključka u uredima distributera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Procedure za rješavanje prigovora krajnjih kupaca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opći uvjeti za isporuku električne energije FBiH</td>
<td>FERK</td>
<td>prva polovica 2008.</td>
</tr>
<tr>
<td>Mjerna pravila elektroenergetskog sustava FBiH</td>
<td>FERK</td>
<td>prva polovica 2008.</td>
</tr>
<tr>
<td>Mrežna pravila za distribucijsku mrežu</td>
<td>FERK RERS</td>
<td>prva polovica 2008.</td>
</tr>
<tr>
<td>Unaprijeđena Pravila o dodjeli prekograničnih prijenosnih kapaciteta</td>
<td>DERK</td>
<td>prvi kvartal 2008.</td>
</tr>
<tr>
<td>Pravila, procedure i troškove priključka na prijenosnu mrežu</td>
<td>DERK</td>
<td>prvi kvartal 2008.</td>
</tr>
</tbody>
</table>
2.7. Podrška socijalno ugroženim potrošačima električne energije (MODUL 7)

Izvršen je pregled studije "Socijalna procjena potrošača električne energije i vrednovanje mehanizama socijalne zaštite", koja je osnova za izradu ovog modula. Studija je izvršila: identifikaciju ključnih nosilaca reformi u oblasti električne energije, uključujući njihove karakteristike, njihov interes u reformskim programima, procjenu kako će na njih reforme uticati i procjenu koliko je oni važni za sprovođenje reformi; socijalnu procjenu potrošača električne energije u servisnoj oblasti svake od tri elektroprivrede i identifikaciju socijalnih grupa koje bi bile posebno ugrožene povećanjem tarifa; evaluaciju (vrednovanje) mehanizama socijalne zaštite i kvantitativnu ocjenu potrošača električne energije, na osnovu kojih su izvedeni zaključci i date preporuke.

Identifikovane su aktivnosti koje su preduzele Vlade Federacije i RS u implementaciji preporuka Studije. U tom cilju obavljeno je 16 intervjuja sa zainteresovanim stranama u kojima je učešće uzelo veliki broj ključnih osoba. Preporuke Studije nisu provedene, a nema ni saznanja da se provode ili da je izabran neki model. Realizacija preporuka Studije u analiziranom periodu je izostala zbog nedostatka inicijative i koordinacije.

Identifikovane su promjene cijena el. energije za domaćinstva od momenta kada je Studija dostavljena elektroprivredama do datuma izrade studije. Potrebni podaci su prikupljeni u razgovorima sa regulatorima i elektroprivrednim (distributivnim) kompanijama. U cjelini je izostalo usklađivanje cijena električne energije sa okruženjem i širim tržištem. Neki tarifni postupci su u toku.

Analiza dosadašnjih rezultata implementacije Studije izvršena je i prikazana na osnovu navedenih obavljenih intervjuja i ankete kojom je obuhvaćeno 3 873 potrošača električne energije i drugih energenata. Potrebni podaci su prikupljeni u razgovorima sa regulatorima i elektroprivrednim (distributivnim) kompanijama. Neki tarifni postupci su u toku.

Razmatranje mogućnosti za proširenje mehanizama zaštite socijalno ugroženih potrošača el. energije na potrošače ostale energije u BiH obrađeno je na temelju obavljenih intervjuja i ankete. Osnovna pitanja u programima subvencioniranja su: (a) korisnici prava na subvencije, (b) nivo subvencionirane potrošnje, (c) izvori sredstava i (d) model subvencioniranja. Za potrebe subvencioniranja najugroženijih potrošača električne energije, odgovor na ova pitanja je dat u Uredbama o subvencioniranju, a u većoj mjeri se mogu primijeniti i na druge energente. Predviđeni nivo subvencionirane potrošnje električne energije bi trebalo zadržati, a za svaki od drugih energenata bi se morao posebno procijeniti. Ova aktivnost je neophodna da bi se mogla predvidjeti potrebna sredstva za subvencioniranje drugih energenata. Dok je za subvencioniranje najugroženijih potrošača električne energije predviđen alternativni izvor finansiranja (budižet, platn, centralno grijanje), za druge energente bi prikupljanje sredstava za subvencioniranje preko tarifa bilo teško (plin, centralno grijanje) ili nemoguće (čvrsto i tečno gorivo). Za provođenje subvencioniranja svih energenata može se primijeniti isti ili sličan model.

Navedenim aktivnostima prikupljeni su potrebni podaci i informacije i stvoreni uslovi za davanje preporuka za dalje aktivnosti na zaštiti socijalno ugroženih potrošača električne energije i mogućnost proširenja predloženih mehanizama na subvencioniranje drugih energenata.
2.8. **Rudnici uglja (MODUL 8)**

Unutar ovog modula izvršena je analiza ugljarskog sektora u Bosni i Hercegovini te projekcije njegova budućeg razvoja.

Planovi za razvoj novih i modernizaciju postojećih termoenergetskih kapaciteta u jugoistočnoj Evropi su indikator da ugalj nastavlja biti važan izvor energije u ovom geoprostoru, pa je za očekivati da će ugalj i u Bosni i Hercegovini igriti ključnu ulogu za sigurnost i energetsku efikasnost ove zemlje pogotovo u oblasti proizvodnje električne energije.

Ugljarska aktivnost u Bosni i Hercegovini se danas realizuje u 12 različitih horizontalno i vertikalno integriranih te tržišno i infrastrukturno nepovezanih preduzeća pri čemu neka od njih upravljaju sa više ugljenokopa. Ugljarski kapaciteti u Ugljeviku i Gacku su od početka ove studije svjetlosti izvršenja Programa zaštite socijalno najugroženijih potrošača energenata, a potrošnja dok se neznatne količine izvoze.

U rudnicima uglja u BiH je 2005. godine proizvedeno cca 9.2 miliona tona uglja (od čega cca 5.8 miliona tona otpada na rudnike FBiH, a cca 3.4 miliona tona na rudnike RS) što predstavlja tek oko 50% ostvarene proizvodnje uglja u 1990. godini. Efektivna tražnja termoelektrana je dobrim dijelom regulator proizvodnje ugljarskog sektora obzirom da ona apsorbira cca 85% ukupno proizvedenog uglja. Ostatak se realizuje u industriji i širokoj potrošnji dok se neznatne količine izvoze.
Proizvodni proces se u rudnicima uglja u BiH u 2005. godini realizovao sa stalnim sredstvima po sadašnjoj vrijednosti od cca 1,64 milijarde KM krajem te godine. Podaci u ekonomskoj analizi bosanskohercegovačkog ugljarstva ukazuju na veoma visoki stepen otpisa odnosno starost raspoloživih osnovnih sredstava. Primjer radi, stepen otpisa opreme u rudnicima uglja FBiH iznosio je čak 93% krajem 2005. godine.

Analizirajući troškovnu strukturu proizvodnje uglja u BiH uočilo se da su tu dominantni troškovi radne snage (preko 40%) a zatim slijede energeti, amortizacija, itd. To su osnovni troškovi o kojima se obavezno mora voditi računa kada se definišu aktivnosti na sniženje cijene proizvodnog uglja. Inače, sadašnje cijene koštanja uglja (2005.) su kod većine rudnika u FBiH (izuzetak su Rudnik «Gračanica», Rudnik «Banovići» i Rudnik «Durđevik») znatno više od prodajne cijene uglja (4,5 KM/GJ) i kreću se 4,69 KM/GJ (Rudnik «Kakanj») do 8,11KM/GJ (Rudnik «Breza»). Cijene koštanja uglja u istom periodu (prema podacima stručnih službi termoelektrana) u Ugljeviku i Gacku su znatno niže od ovih i kao što je već navedeno direktno su inkorporirane u cijene koštanja elektroenergije.

Prema referentnom scenariji S2 u Bosni i Hercegovini bi trebalo očekivati slijedeću dinamiku proizvodnje uglja:

- tehnološko zaostajanje i kontunuirani pad produktivnosti,
- nekonkurentnost u komparaciji sa svjetskim ugljarskim standardima,
- kontinuirani gubitci u poslovanju,
- hroničan nedostatak kapitala za investicije,
- nepovoljna struktura zaposlenosti, itd.

Navedena ekonomska analiza potvrđuje da je posljednjih godina preduzeto veoma malo da se ovakva situacija popravi i ulagalo se uglavnom na tekuće održavanje kapaciteta. Višegodišnji kumulirani problemi u funkcionisanu ugljarskog sektora još su posebno kritični u ekonomsko-ekološkom aspektu, stoga je potrebno da se odmah započne proces restrukturiranja u gljarskog sektora u BiH.

Pored direktnih i indirektnih troškova poslovanja, na poslovnu situaciju bosanskohercegovačkih rudnika veoma utiče i visoki nivo zaduženosti u kome dominiraju neizmirene obaveze po doprinosima (PIO, zdravstvo, itd.) i obaveze prema bankama. Rješenje ovog problema je jedan od ključnih zadataka u budućem procesu restrukturiranja ugljarstva u BiH.
<table>
<thead>
<tr>
<th></th>
<th>Nivo proizvodnje uglja (u 000 tona/po godinama)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBiH</td>
<td>5 725,0</td>
</tr>
<tr>
<td>RS</td>
<td>3 388,0</td>
</tr>
<tr>
<td>BiH</td>
<td>9 113,0</td>
</tr>
</tbody>
</table>

Uočljivo je da bi se po ovom scenariju 2015. godine premašila proizvodnja uglja iz 1990. godine i neznatno bi porasla do kraja analiziranog perioda. Pri ovakvoj procjeni pošlo se prije svega od pretpostavke da će restrukturiranje ugljarških kapaciteta biti dovršeno iza 2010. godine. Krajnji ciljevi procesa restrukturiranja industrije uglja u BiH bi rezultirali prije svega:

- ostvarenje ekonomski održive proizvodnje,
- rast konkurentnosti domaćeg uglja u odnosu na uvozni i druge energente,
- redukciju proizvodne cijene uglja ispod 2,0 €/GJ,
- redukciju broja zaposlenih sa 16000 na cca 12000 ljudi uz rješavanje socijalnog statusa viška zaposlenih,
- dostizanje većeg stepena sigurnosti na radu, itd.

Za realizaciju ovih, ovirno definisanih ciljeva u ugljarškim kapacitetima BiH treba naravno donijeti i realizovati ambiciozni plan razvojnih aktivnosti. Po tom planu u rudnicima uglja u BiH treba, kako se procjenjuje investirati najvećim dijelom u novu opremu i revitalizaciju postojeće te u ostale projekte slijedeći obim kapitala (planirane investicije za FBiH u narednoj tabeli ne sadrže investicije za nove objekte – površinske kopove TE Bugojno i TE Kongora):

Tablica 8. Investicije u sektor ugljarstva u 000 €

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FBiH</td>
<td>113969</td>
<td>124757</td>
<td>85131</td>
<td>323602</td>
</tr>
<tr>
<td>RS</td>
<td>93568</td>
<td>204520</td>
<td>92034</td>
<td>390122</td>
</tr>
<tr>
<td>BiH</td>
<td>207537</td>
<td>329277</td>
<td>176910</td>
<td>713723</td>
</tr>
</tbody>
</table>

*Iznosi u EUR su izračunati prema srednjem tečaju 1€ =1,9558KM

Za realizaciju procijenjenog investicijskog ciklusa biće neophodno obezbijediti politički, ekonomski i ekološki prihvatljiva «pravila igre» na nivou zemlje i entiteta i odgovarajuće preduslove a prije svega adekvatne finansijske izvore. Tek na taj način moći će se realizovati
programirani obim proizvodnje, sniziti cijene koštanja uglja i reducirati zaposlenost u bosanskohercegovačkim ugljarskim kapacitetima.

2.9. Daljinsko grijanje (MODUL 9)

Unutar Modula 9 dan je pregled postojećih postrojenja i sustava područnog grijanja, njihove konkurentnosti s alternativnim izvorima proizvodnje toplinske energije, i opcija za rekonstrukciju, poboljšanja i povećanja energetske efikasnosti. Nadalje su dane projekcije razvoja daljinskog grijanja u Bosni i Hercegovini za naredno 15-godišnje razdoblje.

Prvenstveno je razmotreno stanje daljinskog grijanja prema područjima BiH i u relevantnim toplinarskim poduzećima. Prikupljeni su podaci od šest najznačajnijih toplinarskih poduzeća iz Federacije BiH i četiri iz Republike Srpske. Za svako od ovih poduzeća dan je detaljniji opis u smislu vlasničkih odnosa, mjerenja potrošnje, proizvodnje, karakteristika transportnog i distribucijskog sustava, dosadašnjeg i očekivанog razvoja, i karakteristika poslovanja. Za promatranu 2005. godinu su dani iskazani rezultati poslovanja.

Na temelju obrađenih podataka uočene su opće i specifične karakteristike situacije u toplinarstvu u Bosni i Hercegovini.

U Federaciji BiH većina toplinarstava kao toplinski agregat nema vlastita kotlovska postrojenja, već su oslonjena na lokalna termoenergetska postrojenja – termoelektrane i željezaru. To je uvjetovano predratnim razvojem kada su se bogata nalazišta domaćih energenata – mrkog ugljena i lignita – koristila za izgradnju teške industrije, te je višak toplinskih kapaciteta bio poveljan za izgradnju i širenje komunalnih mreža područnog grijanja. Ratna zbivanja su uzrokovala velike teškoće u radu toplinarskih poduzeća, kako tehničke tako i ekonomske, što je najveća prepreka prepračku toplinarstva. Do poratnog oporavka je međutim došlo, kroz procese restrukturiranja i ponovne uspostave realnih tržišnih odnosa. Postotak naplate usluga koji se danas ostvaruje je u porastu, no i dalje uglavnom dolazi do kumulacije gubitaka koji su glavni oslonac ekonomski održivosti toplinarstva.

Toplinarstva u RS su oslonjena na vlastita kotlovska postrojenja. Temeljna goriva su mazut i ugljen. Poslovanje i mogućnosti ulaganja u rekonstrukciju i razvoj i ovdje ovise o postotku naplate usluga, koji je varijabilan. Nabava mazuta kao uvoznog energenta predstavlja opterećenje jer svako toplinarsko poduzeće samostalno provodi proceduru nabave, te je izražena inicijativa da se u ovu proceduru uključe državne institucije.

Karakteristično je da se kod svih toplinarstava na području BiH toplina koristi gotovo isključivo za grijanje prostora (u vrlo rijetkim slučajevima kao procesna toplina za industriju) a ne i za pripremu potrošne tople vode.

U razmatranjima zakonodavnog okvira koji bi regulirao položaj daljinskog grijanja u Bosni i Hercegovini, ustanovljeno je da je postojeća zakonska regulativa trenutno za ovo područje vrlo nerazvijena i dan je pregled relevantnog regulativnog okvira na razini Europske unije, te kao primjer razvoja legislative problematike toplinarstva u sličnim tranzicijskim uvjetima, pregled legislativnog okvira u Republici Hrvatskoj.

U pogledu mogućnosti rekonstrukcija i poboljšanja djelovanja daljinskog grijanja u Bosni i Hercegovini, razmatrane su skupine mjera s primarnim ciljem povećanja energetske efikasnosti te poboljšanja funkcioniranja, poslovanja i konkurentnosti toplinarskih poduzeća.
Razmotrene mjere se odnose na djelovanja sa strane proizvodnje i distribucije i sa strane potrošnje toplinske energije.

Projekcije razvoja daljinskog grijanja u Bosni i Hercegovini izvedene su na temelju tri razvojna scenarija, postavljena za cijelu studiju energetskog razvoja BiH. To su S2 - referentni scenarij potrošnje energije, S3 - scenarij potrošnje energije s mjerama smanjenja potrošnje, i S1 - niži scenarij potrošnje energije (ekonomskog rasta).

Pritom su toplinarstva grupirana prema odgovarajućim zonama, prema kojima su račeni scenariji.

Kod scenarija su razmatrana urbana područja u svakoj zoni, i potrošači topline u stanovima i obiteljskim kućama, te u uslužnom sektoru koji obuhvaća i privredne te javne objekte. Opći polazni podaci su bili stopa ekonomskog rasta i porast stanovništva u pojedinoj zoni, te kretanje udjela urbanih područja u ukupnom stanovništvu, koji bilježe osjetan rast u svim slučajevima. Projekcije uzimaju na veliki utjecaj primjene mjera racionalnije potrošnje toplinske energije, gdje čak i uz viši ekonomski rast i povećanje toplinskog komfora stopa potrošnje energije ima bitno manji rast nego po drugim scenarijima, pogotovo tijekom duljeg razdoblja.

2.10. **Prirodni plin (MODUL 10)**

U okviru ovog modula provedene su slijedeće aktivnosti:

- Sagledane su i ažurirane preporuke i rezultati dviju postojećih studija (NERA i RAMBOL),

- Definirane su preporuke o strukturi cijena plina,

- Prognoziran je porast potrošnje prirodnog plina do 2020. godine,

- Procijenjena su potrebna ulaganja u sektor prirodnog plina, i

- Date su preporuke o opskrbi plinom s obzirom na količine i sigurnost.

Regulacija - Proteklih godina provedeni su različiti projekti kako bi se pronašao optimalan način regulacije plinskog sektora, pri čemu je osobito značajan izvještaj NERA i noviji izvještaž - Reforma plinskog sektora.

Autori ovog modula generalno se slažu s oba dokumenta. Također smatraju da bi BiH trebala iskoristiti već stečena iskustva u radu regulatora u sektoru električne energije. Iako ova dva područja nisu identična, oba imaju dovoljno sličnosti i u mnogim zemljama, npr., Španjolskoj i Portugalu te u većini zemalja Latinske Amerike isti subjekt vrši obje funkcije.

Potrošnja - Predviđa se porast potrošnje prirodnog plina do 2020. godine do 826,3 mil. m³ u FBiH, 296,9 mil. m³ u RS i 4,1 mil. m³ u Distriktu Brčko. Ukupna prognozirana potrošnja plina u BiH će rasti do 1351,4 mil. m³. Pojedinačno su analizirani neki istaknuti događaji, kao što su:

- Uključivanje u proizvodne kapacitete postrojenja s kombiniranim ciklusom od 300 MW, ili umjesto njega, dva kogeneracijska postrojenja u području Tuzle - 500 mil. m³ / god.,
- Prelazak nekih postrojenja za daljinsko grijanje na prirodni plin i kogeneraciju - relativno niski udjeli u ukupno predviđenoj potrošnji,
- Potrošnja u rafinerijama nafte – bez značajnije potrebe za prirodnim plinom, položaj rafinerija, koje se nalaze na početku plinovodnog sustava, garantira sigurnu opskrbu.

Infrastruktura - Preporuke o opskrbi plinom. U slučaju da nije moguće osigurati povećanje ulaznog tlaka u Šepku na 50 bara, odnosno osigurati rad plinovoda na projektiranim uvjetima tlaka i protoka, potrebno je za opskrbu Sarajeva osigurati novi dobavni pravac. Novu dobavu je moguće u tom slučaju osigurati iz Hrvatske iz pravca sjevera (Bosanski Brod-Zenica plinovod) ili iz južnog pravca (Ploče-Mostar-Sarajevo plinovod).

Slika 6. Pregled prioriteta proširenja mreže prirodnog plina
Tablica 9. Preporuke modula 10

<table>
<thead>
<tr>
<th>Preporuka</th>
<th>Nadležna institucija</th>
<th>Period provedbe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usvajanje zakona o plinu</td>
<td>Vlade: BiH, FBIH, RS</td>
<td>Odmah</td>
</tr>
<tr>
<td>Imenovanje regulatora tržišta i operatora prijenosnog sustava</td>
<td>Vlade: BiH, FBIH, RS</td>
<td>Odmah nakon usvajanja Zakona o plinu</td>
</tr>
<tr>
<td>Opći propisi organizacije sektora</td>
<td>Vlade: BiH, FBIH, RS</td>
<td>Odmah nakon imenovanja regulatora</td>
</tr>
<tr>
<td>Organizacija, definicija i upravljanje djelatnostima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razdvajanje, zakonsko i vlasničko, transport, distribucija i komercijalne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>djelatnosti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otvoren pristup treće strane transportnoj mreži i distribuciji</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liberalizacije tržišta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revizija tarifa</td>
<td>Regulator tržišta?</td>
<td>Odmah nakon usvajanja Zakona o plinu</td>
</tr>
<tr>
<td>Proširenje postojeće mreže</td>
<td>OTS</td>
<td>2007 - 2008</td>
</tr>
<tr>
<td>Banja Luka opskrba iz Bosanskog Broda</td>
<td>OTS</td>
<td>2008 - 2010</td>
</tr>
<tr>
<td>Tuzla – opskrba iz Zvornika</td>
<td>OTS</td>
<td>2008 - 2012</td>
</tr>
<tr>
<td>Samo ako je moguće na postojećem plinovodu osigurati sigurnu dobavu plina</td>
<td>OTS</td>
<td>2012 - 2015</td>
</tr>
<tr>
<td>uz minimalno 50 bara. U drugom slučaju odmah prelazimo na slijedeću točku, a ovaj spoj odgađamo</td>
<td>OTS</td>
<td>oko 2015</td>
</tr>
<tr>
<td>Povezivanje Tuzla – Doboj – Derventa</td>
<td>OTS</td>
<td></td>
</tr>
<tr>
<td>Povezivanje Ploče (RH) - Mostar</td>
<td>OTS</td>
<td></td>
</tr>
</tbody>
</table>
2.11. Nafta (MODUL 11)

U okviru ovog modula analiziran je sektora naftne, odnosno naftne privrede u Bosni i Hercegovini. Prve aktivnosti prilikom izrade ovog Modula bile su vezane na pregled trenutnog stanja naftnog sektora i njegov detaljnog pregled. U tu svrhu su posjećene Rafinerija naftne AD Bosanski Brod i Rafinerija ulja u Modriči. Rafinerijska postrojenja u Bosanskom Brodu podijeljena su u dvije tehnološke linije ukupnog kapaciteta 4 320 000 tona godišnje, a prezentiran je detaljni pregled tehnoloških karakteristika obje proizvodne linije. Stara linija je trenutno u potpunosti operativna (s kapacitetom od 1 320 000 t/god), no u proteklom razdoblju je, zbog nedostatka financijskih sredstava proizvodnja bila diskontinuirana odnosno linija je radila s vrlo niskom iskorištenjem kapaciteta. Nova linija za preradu naftne planiranog kapaciteta od 3 000 000 t/god izgrađena je 1991. godine te puštena u probni rad. Početak ratnih zbivanja onemogućio je puštanje nove linije u rad što je nakon rata također bilo spriječeno uslijed razaranja i nedostatka financijskih sredstava. S privatizacijom Rafinerije od strane ruske kompanije NefteGazInKor započeli su pripremni radovi na obnovu kontinuirane proizvodnje. S druge strane, u Rafineriji ulja Modriča proizvodnja je kontinuirana, no s relativno niskom iskorištenjem kapaciteta što je u velikoj mjeri posljedica nedostatka sirovine iz Rafinerije naftne u Bosanskom Brodu.

Tržište naftnih derivata u BiH gotovo je potpuno ovisno o uvozu što je bio jedan od bitnih aspekata analize. Prema raspoloživim podacima potrošnja derivata u Bosni i Hercegovini kretala se od 800 000 t u 2000. godini do 1,3 milijuna tona u 2005. godini. Uvoz naftnih derivata vršio se najvećim dijelom iz Hrvatske, Srbije, Crne Gore i Mađarske. Prema strukturi potrošnje najveći udio u finalnoj potrošnji naftnih derivata zauzima promet (gotovo 70%).
zatim slijedi industrija s 12%, kućanstva s 10%, poljoprivreda s 8% te sektor usluga sa svega 2%. Struktura potrošača pojedinih vrsta derivata određena je temeljem ankete koja je provedena u oba entiteta i u Brčko Distriktu te na osnovi podataka prikupljenih od nadležnih institucija.

U Bosni i Hercegovini posluje preko 800 benzinskih stanica što se u smislu konkurentnosti može smatrati prihvatljivim, no u smislu ekonomičnosti zasigurno se radi o neracionalnim investicijama pa se već i sada poslovanje izvjesnog broja benzinskih postaja odvija na telursko sondiranje. Na osnovi postojećeg stupnja istraženosti, smatra se da postoje rezerve kompanija AMOCO, EXLOG, GECO, ECL i dr. Provedena su obimna geokemijska, geomagnetska, geoelektrična istraživanja kao i reflektivna seizmička ispitivanja i magnetno telursko sondiranje. Na osnovi postojećeg stupnja istraženosti, smatra se da postoje rezerve procijenjene na oko 50 milijuna tona sirove nafte.

Pitanje sigurnosti opskrbe naftnim derivatima obrađeno je s gledišta obveznih zaliha naft i naftnih derivata prema propisima važećima u Europskoj Uniji, ali i sustava obveznih zaliha za zemlje članice IEA. Uz detaljan prikaz zakonske regulative EU i RH, prikazani su različiti sustavi obveznih zaliha u pojedinim zemljama Europe te dana preporuka za uspostavljanje Agencije za obvezne zalihe u BiH koja bi bila nadležna za izgradnju skладišta i formiranje zaliha u određenom vremenskom periodu.

Prijedlozi u cilju daljnje razvoja naftnog sektora kao bitnog gospodarskog čimbenika Bosne i Hercegovine predloženi su u tablicama 11, 12 i 13.
Tablica 11. Preporuke modula 11

<table>
<thead>
<tr>
<th>Preporuka</th>
<th>Nadležna institucija</th>
<th>Rok provedbe</th>
</tr>
</thead>
</table>

Tablica 12. Investicije u Rafineriju nafte A.D. Bosanski Brod, Rafineriju ulja Modriča i distributivnu mrežu Petrol Banja Luka u 000 €

<table>
<thead>
<tr>
<th>Projekt</th>
<th>Vrijednost projekta</th>
<th>Razdoblje ulaganja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukupno</td>
<td>279 200</td>
<td>2007. – 2010.</td>
</tr>
</tbody>
</table>

Tablica 13. Investicije u terminale za skladištenje obveznih zaliha nafte i naftnih derivata BiH u 000 €

<table>
<thead>
<tr>
<th>Skladišni kapaciteti za obvezne zalihe</th>
<th>Vrijednost projekta</th>
<th>Razdoblje ulaganja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dizel gorivo i ekstralako loživo ulje</td>
<td>54 750</td>
<td>2010. – 2020.</td>
</tr>
<tr>
<td>Ukupno</td>
<td>183 350</td>
<td>2010. – 2020.</td>
</tr>
</tbody>
</table>
2.12. Upravljanje potrošnjom, štednja energije i obnovljivi izvori energije (MODUL 12)

Osnovni cilj ovog modula bio je na osnovi pregleda zatečenog stanja u Bosni i Hercegovini za područje energetskih efikasnosti u sektorima zgradarstva (stambeni i nestambeni sektor), prometa i industrije te obnovljivih izvora energije dati konkretna preporuke kako s jedne strane poboljšati energetsku efikasnost u navedenim sektorima a s druge povećati udio korištenja obnovljivih izvora energije.

U dijelu modula koji se bavi energetskom efikasnošću i štednjom energije sagledana je sadašnja situacija u sektorima zgradarstva (sektor stambene i nestambene namjene), prometa i industrije u Bosni i Hercegovini te su na osnovu prikupljenih saznanja identificirane konkretna mjere za povećanje energetske efikasnosti u sljedećim sektorima:

1. Zgradarstvo
 - pregled osnovnih načela energetske efikasnosti u zgradama;
 - mjere povećanja EE arhitektonsko-građevinskih dijelova zgrade;
 - mjere povećanja EE sustava grijanja, ventilacije i klimatizacije;
 - mjere povećanja EE sustava rasvjetne i energetskih trošila;
 - provedba energetskog pregleda (audita) zgrade;
 - ulogu infracrvene termografije u kontroli potrošnje energije u zgradama;
 - kako bi se postiglo smanjenje potrošnje energije u kućanstvima od 60% do 2020. godine treba primijeniti gore navedene mjere EE na ukupno 154.437 stambenih jedinica, odnosno oko 14,65 milijuna m² stambene površine.

2. Promet
 - za prometni sektor Bosne i Hercegovine odabrano je 14 potencijalnih mjera, koje su podijeljene u šest kategorija: legislativno–normativne, legislativno–informativne, financijske, fiskalne, informacijsko–edukativne, infrastrukturne i organizacijske;
 - pravovremenim uvođenjem mjera, procijenjen je potencijal ušteda u potrošnji goriva od 8,1% do 2020. godine u odnosu na potrošnju iz 2005. godine.
 - najdjelejtnije mjere, čijim uvođenjem se očekuju najveće uštede u potrošnji goriva te istovremeno najmanje emisije ugljičnog dioksidna su: 1. obvezna zamjena konvencionalnih goriva biogorivima i drugim alternativnim gorivima (stlačeni prirodni plin, ukapljeni naftni plin i biodizel u prvoj fazi), koja spada u legislativno/infrastrukturnu te 2. uvođenje poreza na emisiju CO₂ s izuzećem za čišća vozila i vozila pogonjena biogorivima, odnosno alternativnim gorivima, koja pripada kategoriji fiskalnih mjera.
• veliki doprinos povećanju energetske efikasnosti očekuje se poticanjem intermodalnosti, poglavito u urbanim sredinama, subvencijama za kupnju energetski prihvatljivijih vozila te poticanjem proizvodnje biogoriva.

3. Industrija

• osnivanje Mreže industrijske energetske efikasnosti čiji bi glavni ciljevi obuhvaćali:
 • racionalizaciju toplinske i električne energije u prvenstveno industrijskom sektoru;
 • ostvarenje neposrednjeg kontakta između industrijskih tvrtki, proizvođača energije, konzultantskih organizacija i stručnjaka te državnih, entitetskih i lokalnih institucija sa zajedničkom interesom povećanja energetских efikasnosti;
 • koordinaciju između sektora industrije, usluga i dijela javnog sektora (bolnice itd.)
 • uključivanje projektanata iz oblasti vezanih za energetiku, njihovo uvođenje u informiranje i obuku putem seminara, i davanje veće uloge u odlučivanju o pitanjima energetske efikasnosti
 • povezivanje znanstveno-stručnih ustanova (instituti, fakulteti itd.) iz različitih sektora oko pitanja energetike na čitavom prostoru BiH
 • međunarodnu suradnju i uključivanje stručnjaka iz BiH u rad europskih mreža industrijske energetske efikasnosti.

Osnovni cilj dijela modula koji tretira korištenje obnovljivih izvora energije bio je identificirati potencijale, prepreke i mogućnosti korištenja sljedećih obnovljivih izvora energije na državnoj i entitetskim razinama u BiH:

• Biomasa

 Biomasa u obliku ogrjevnog drveta i drvenog ugljena je trenutno rastući izvor energije u Bosni i Hercegovini, čija potrošnja u 2003. godini se procjenjuje na 1 464 400 tona.

• Vjetar

 Ukupan tehnički potencijal za korištenje energije vjetra Bosne i Hercegovine procjenjuje se na cca 2000 MW, pri čemu treba istaknuti da je spomenuti iznos proizašao iz sagledavanja raspoloživosti prikladnih prostora za vjetroelektrane na prostoru BiH ne uzimajući u obzir eventualna ograničenja (priključak na mrežu, zaštita okoliša i dr.).

• Sunce

 Iz svih prikupljenih podataka i provedenih analiza može se zaključiti da postoji značajan potencijal primjene Sunčeve energije na području Bosne i Hercegovine, koji iznosi 70,5 milijuna GWh dozračene energije ukupnog Sunčevog zračenja godišnje.

 Zbog relativno visoke cijene fotonaponskih sustava ne može se očekivati značajnija primjena ukoliko državna i entitetske uprave ne uvedu sustav poticanja i to kroz garanciju minimalne poticanja cijene ali i razdoblja poticanja ne manjeg od 12 godina.

• Geotermalna energija
Ukupni mogući instalirani kapacitet geotermalnih izvora na 28 lokacija na kojima je prema postavljenim kriterijima moguća toplinska eksploatacija u Federaciji Bosne i Hercegovine iznosi 7,15 MWt ako se promatra samo mogućnost grijanja prostora (smanjenje temperature do 50ºC), odnosno 57,08 MWt ako se promatra geotermalna energija za grijanje prostora i rekreativne i balneološke potrebe (smanjenje temperature do 20ºC).

Ukupni mogući instalirani kapacitet geotermalnih izvora na 16 lokacija na kojima je prema postavljenim kriterijima moguća toplinska eksploatacija u Republici Srpskoj je 2,09 MWt ako se promatra samo mogućnost grijanja prostora, odnosno 33,12 MWt ako se promatra geotermalna energija za grijanje prostora i rekreativne i balneološke potrebe.

- **Male hidroelektrane**

U sklopu EP BIH planirana ukupna instalirana snaga u malim hidroelektranama kandidatima iznosi oko 34 MW, a planirana prosječna godišnja proizvodnja oko 127 GWh. Trenutačno su u sklopu EP BIH u pogonu male hidroelektrane ukupne instalirane snage 23,7 MW.

Za područje EP HZHB planirana ukupna instalirana snaga u malim hidroelektranama kandidatima iznosi oko 40 MW, a planirana prosječna godišnja proizvodnja oko 186 GWh.

Na području RS planirana ukupna instalirana snaga u malim hidroelektranama kandidatima iznosi oko 212 MW, a planirana prosječna godišnja proizvodnja oko 650 GWh. U ovom trenutku, na području ERS u pogonu su male hidroelektrane ukupne instalirane snage 14 MW.

Dva glavna zaključka ovog modula vezana su uz iduća zapreljačenja:

- Nužnost izgradnje institucionalnog i zakonodavnog okruženja na državnoj i entitetskim razinama u BiH kao jednog od osnovnih preduvjeta uspješne implementacije mjera energetskih efikasnosti i korištenja obnovljivih izvora energije. Sva raspoloživa iskustva drugih zemalja su jednoglasna u zaključku da je bez poticajnih mjera na državnoj razini izuzetno teško, gotovo nemoguće, pokrenuti značajnije korištenje obnovljivih izvora energije (OIE) i primjenu mjera energetskih efikasnosti (EE) većih investicijskih troškova.

 U ovom trenutku Bosna i Hercegovina nema razrađen akcijski plan za promicanje obnovljivih izvora energije kroz prihvaćeni pravni okvir, niti ima numerički izražen potencijalnih financijera ali imaju veliku društvenu vrijednost.

- U cilju iznalaženja mehanizama financiranja EE i OIE na državnoj i entitetskim razinama, najdjelotvorniji način je osnivanje Fonda čiji bi osnovni cilj bio poticati realizaciju projekata OIE i EE koji rezultiraju pozitivnim učincima na društvo u cjelini (prvenstveno nekomercijalni projekti koji nisu isplativi po kriterijima potencijalnih financijera ali imaju veliku društvenu vrijednost).

 Sredstva za financiranje Fonda mogu se osigurati iz namjenskih prihoda na državnoj ili entitetskim razinama od naknada za onečišćivače okoliša, naknade korisnika okoliša, posebnih naknada za okoliš na vozila u motorni pogon i sl.
2.13. Okoliš (MODUL 13)

U okviru ovog modula, izrađen je proračun emisija u zrak najznačajnijih stakleničkih plinova (CO$_2$, CH$_4$ i N$_2$O) i ostalih značajnih onečišćujućih tvari (SO$_2$, NO$_x$, CO, NMVOC i čestice) za 1990. godinu i razdoblje od 2000. do 2005. godine. Emisije u zrak su detaljno analizirane za elektroenergetski sektor, temeljem prikupljenih podataka iz elektroprivreda. Uz elektroenergetiku određene su i emisije iz ostalih postrojenja za proizvodnju i transformaciju energije, industrije i građevinarstva, malih ložista u kućanstvima, uslugama i poljoprivredu/šumarstvu/akvakulturi; kao i cestovnog i vancestovnog prometa. Emisije su izračunate za Bosnu i Hercegovinu, Federaciju Bosne i Hercegovine, Republiku Srpsku i Distrikt Brčko, primjenom IPCC i EMEP/CORINAIR metodologija. Ostali utjecaji analizirani su za sve termoelektrane, hidroelektrane, rudnike i rafinerije u Bosni i Hercegovini, temeljem prikupljenih podataka o postojanju i provedbi sustava zaštite okoliša, o količinama i vrsti te načinu privremenog skladištenja i konačnog zbrinjavanja otpada, kao i o karakteristikama otpadnih voda i njihovoj obradi.

Razvoj energetskog sektora i povećana potrošnja energije mogu uzrokovati negativne utjecaje na okoliš. Stoga je izrađena tehnoekonomski analiza mjera za smanjenje emisije u zrak iz termoelektrana. Odabrane su najbolje raspoložive tehnologije za smanjenje emisije SO$_2$, NO$_x$ i čestica, koje bi trebale osigurati smanjenje koncentracija onečišćujućih tvari u dimnim plinovima na prihvatljivu razinu. Očekivano smanjenje emisije primjenom odabranih tehnologija uključeno je u izradu projekcija emisija. Očekivano smanjenje emisija CO$_2$ prema scenariju s mjerama (S3) je nešto blaži.

Obzirom na probleme koje emisije stakleničkih plinova izazivaju na globalnoj razini (zatopljenje i klimatske promjene), ali i očekivane obveze koje će Republika Bosna i Hercegovina vrlo vjerojatno preuzeti u okviru novog sporazuma o smanjenju emisije stakleničkih plinova za razdoblje nakon 2012. godine (tzv. post Kyotsko razdoblje), važno je poznavati projekcije emisija CO$_2$ (slika 7) iz stacionarnih i mobilnih energetskih izvora.

\[\text{Slika 7. Projekcija emisije CO}_2, \text{BiH}\]

Porast emisije CO$_2$ prema referentnom scenariju (S2) i prema scenariju s mjerama (S3) je značajan. Nakon znatnog smanjenja emisije u ranim 90-im godinama emisija CO$_2$ raste u skladu s porastom energetske potrošnje. Sukladno referentnom scenariju (S2), očekivana emisija CO$_2$ u 2020. godini je dvostruko veća od razine emisije iz 2000. godine, ali i 4 posto veća od razine emisije iz 1990. godine. Kao što je očekivano, trend porasta emisija CO$_2$ prema scenariju s mjerama (S3) je nešto blaži.

Zaključke o mogućnosti ispunjavanja očekivanih obveza smanjenja ukupnih emisija stakleničkih plinova moguće je donijeti tek nakon što se s jedne strane obveze definiraju, a s druge strane izradi detaljan i potpun inventar stakleničkih plinova sukladno uputama IPCC metodologije. Uz emisije CO$_2$ iz energetskih izvora, potrebno je izraditi proračun emisija svih antropogenih stakleničkih plinova za povijesno i buduće razdoblje, iz svih energetskih i ne-
energetskih izvora na teritoriju Bosne i Hercegovine te poznavati doprinos uklanjanja CO₂ u ponorima (uglavnom šume). Prvi korak je izrada kompletog inventara i projekcija stakleničkih plinova, koja je u tijeku u okviru izrade Prvog izvješća Bosne i Hercegovine prema Okvirnoj konvenciji UN o promjeni klime.

Zbog svog utjecaja na zakiseljavanje potrebno je pratiti trend emisija SO₂, a značajno je odrediti i emisije NOₓ koje nepovoljno utječu kako na zakiseljavanje tako i na eutrofikaciju i stvaranje štetnog troposferskog ozona (slika 8).

Slika 8. Projekcija emisije SO₂ i NOₓ, BiH

Budući da utjecaji na vodu, tlo, korištenje zemljišta i ekosustave ovise o lokaciji energetskog postrojenja i stanju okoliša u okolini, na temelju identificiranih najznačajnijih utjecaja na te elemente okoliša, dane su preporuke za mjere smanjenja utjecaja za termoelektrane, hidroelektrane, rudnike ugljena te rafinerije nafte i ulja.

Provedenim analizama je ustanovljeno da administrativna potpora praćenju stanja okoliša u Bosni i Hercegovini još uvijek nije na zadovoljavajućoj razini. Stoga je u narednom razdoblju potrebno uložiti organizacijske i financijske napore kako bi se na razini države i/ili entiteta uspostavio kvalitetan sustav praćenja stanja okoliša (monitoring svih sastavnica okoliša), susret prikupljanja podataka o emisijama u okoliš (katastar emisija u okoliš) i osnovati instituciju putem koje će se poticati programi i projekti za zaštitu okoliša (Fond za zaštitu okoliša/životne sredine), za što zakonodavne pretpostavke već postoje.

2.14. Plan investicija i opcije financiranja (MODUL 14)

Temeljna struktura ekonomsko financijske analize investicijskih projekata, u pripremi programa dugoročnog razvoja energetskog sektora Bosne i Hercegovine od 2007. do 2020. godine, podrazumijeva izradu informacijske osnove koju među ostalim čine investicije u izgradnju novih, te revitalizaciju postojećih objekata i postrojenja energetskog sektora.

U tablici 14 dan je pregled ukupnih ulaganja po energetskim sektorima u okviru predviđenog programa razvoja energetskog sektora BiH do 2020. godine.

Investicije u energetski sektor zahtijevaju velika materijalna ulaganja koja angažiraju znatna sredstva nacionalne akumulacije. Stoga kapitalne investicije predstavljaju alociranje kapitala na investicijske prijedloge čije će se koristi realizirati u budućnosti. S obzirom na to da buduće koristi sa sigurnošću nisu poznate, investicijski prijedlozi i u energetski sektor nužno sadrže rizik.

U skladu s ciljevima Modula 14 definiranim projektnim zadatkom, u okviru ovog istraživanja posebno je analizirano stanje elektroenergetskog sektora u Bosni i Hercegovini te predviđanje njegovog razvoja do 2020. godine, kroz pet elektroenergetskih subjekata, tri elektroprivrede, tvrtku za prijenos i operatora prijenosnog sustava.

Kako bi se osigurali uvjeti koji omogućavaju razvitak elektroenergetske djelatnosti u BiH, a time i njezin doprinos razvoju gospodarstva BiH, pretpostavlja se upravljanje poslovanjem i razvitkom elektroenergetske kompanije kao komercijalno održivih trgovačkih društava. U tom kontekstu korišten je model poslovne analize koji služi za ispitivanje i ocjenjivanje dosadašnjeg, te prognozu i upravljanje budućim poslovanjem, a u funkciji razvitka elektroenergetskog sustava do 2020 godine. Korišten model poslovne analize naglašava one aspekte poslovanja koji su ključni za sigurnost i efikasnost poslovanja elektroenergetskih subjekata.

Dakle, za pet trgovačkih društava elektroenergetskog sektora BiH analiziran je njihov sadašnji ekonomski položaj te predviđen razvojni put u budućnosti. Analizirani su financijski tokovi pojedinih elektroenergetskih subjekata što podrazumijeva prognoziranje posljedica predviđenih investicijskih i financijskih odluka, kao i procjenu učinaka iskazanih kroz predviđanje Računa dobiti i gubitka te predviđanje Bilance stanja.

Projekcijom toka novčanih sredstava od poslovnih aktivnosti, investicijskih aktivnosti te financijskih aktivnosti dana je ocjena kompanija u elektroenergetskom sektoru BiH u pogledu njihove sposobnosti da na zadovoljavajućoj razini generiraju buduće pozitivne tokove novca i na taj način ispune sve svoje financijske obveze u razdoblju razvojne projekcije.

Glavna pitanja ključna za uspješnost i efikasnost poslovanja kompanija u elektroenergetskom sektoru BiH odnose se na razinu investiranja u projekte razvoja s jedne strane, te na komercijalne uvjete proizvodnje, prijenosa i distribucije električne energije s druge strane.

Financijska uspješnost iskazana kroz minimalni dobitak, sposobnost kompanija da na zadovoljavajućoj razini ostvaruju buduće pozitivne tokove novca te uravnoteženi odnosi imovine i kapitala u razdoblju razvojne projekcije, kriteriji su, koji u ovoj analizi, određuju granične prosječne prodajne cijene električne energije za obavljanje djelatnosti proizvodnje i distribucije električne energije, graničnu prosječnu tarifu za obavljanje djelatnosti prijenosa električne energije te graničnu prosječnu tarifu za obavljanje djelatnosti neovisnog operatora sustava u BiH.

Uz uvažavanje postavljenih kriterija prihvata programa razvoja elektroenergetskog sektora u BiH do 2020. godine, prognoza posljedica predviđenih investicijskih i financijskih odluka na granične cijene električne energije, nudi slijedeću situaciju:
- graničnu prosječnu prodajnu cijenu električne energije od 11,79 pf/kWh (6,03 €cts/kWh) za obavljanje djelatnosti proizvodnje i distribucije električne energije u EP BiH,
- graničnu prosječnu prodajnu cijenu električne energije od 10,20 pf/kWh (5,21 €cts/kWh) za obavljanje djelatnosti proizvodnje i distribucije električne energije u EP HZHB,
- graničnu prosječnu prodajnu cijenu električne energije od 10,29 pf/kWh (5,26 €cts/kWh) za obavljanje djelatnosti proizvodnje i distribucije električne energije u ERS,
- graničnu prosječnu tarifu za obavljanje djelatnosti prijenosa električne energije u BiH od 0,71 pf/kWh (0,367 €cts/kWh),
- graničnu prosječnu tarifu za obavljanje djelatnosti neovisnog operatora sustava u BiH od 0,0394 pf/kWh (0,0201 €cts/kWh).

Tablica 14. Plan investicija u energetski sektor BiH u milijunima €

<table>
<thead>
<tr>
<th>Energetski sektori</th>
<th>Razdoblje ulaganja</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Elektroenergetski sektor</td>
<td>1 467</td>
<td>1 499</td>
</tr>
<tr>
<td>1.1. EP BiH</td>
<td>540</td>
<td>497</td>
</tr>
<tr>
<td>1.2. EP HZHB</td>
<td>507</td>
<td>422</td>
</tr>
<tr>
<td>1.3. EP RS</td>
<td>340</td>
<td>508</td>
</tr>
<tr>
<td>1.4. Elektroprijenos BiH</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>1.5. NOS BiH</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2. Rudnici ugljena</td>
<td>269</td>
<td>349</td>
</tr>
<tr>
<td>2.1. Federacija BiH</td>
<td>161</td>
<td>144</td>
</tr>
<tr>
<td>2.2. Republika Srpska</td>
<td>108</td>
<td>205</td>
</tr>
<tr>
<td>3. Plinski sektor</td>
<td>83</td>
<td>85</td>
</tr>
<tr>
<td>4. Naftni sektor</td>
<td>322</td>
<td>139</td>
</tr>
<tr>
<td>5. Ukupne investicije</td>
<td>2 141</td>
<td>2 071</td>
</tr>
</tbody>
</table>
Modul 1 - Energetske rezerve, proizvodnja, potrošnja i trgovina
Modul 2 - Potrošnja električne energije
Modul 3 - Proizvodnja električne energije
Modul 4 - Prijenosna mreža
Modul 5 - Distribucija električne energije
Modul 6 - Okvir za regulaciju i restrukturiranje elektroenergetskog sektora
Modul 7 - Podrška socijalno ugroženim potrošačima električne energije
Modul 8 - Rudnici uglja
Modul 9 - Centralno grijanje
Modul 10 - Prirodni plin
Modul 11 - Nafta
Modul 12 - Upravljanje potrošnjom, štednja energije i obnovljivi izvori energije
Modul 13 - Okoliš
Modul 14 - Plan investicija i opcije financiranja